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Abstract

In this dissertation, we aim to address three important questions in practice, which

can be solved through complex survival models. The first project focuses on studying

the longitudinal fitness effect on cardiovascular disease (CVD) mortality. In the second

project, we study the disease-death relation between CVD and all-cause mortality and

evaluate important covariate effects on the disease or death transitions. In the third

project, we compare antiretroviral treatment (ART) for HIV patients and consider

both treatment effect and side effect of the drugs. The first two projects are motivated

by the Aerobics Center Longitudinal Study (ACLS) datasets and the third project is

based on the Health Sciences South Carolina (HSSC) HIV datasets.

The ACLS is a prospective study and involves patients in the Cooper Clinic in

Dallas, TX. Participants had repeated measures of cardiorespiratory fitness (fitness),

which is an objective measure of physical activity, during the study. Fatal outcomes,

such as the CVD or all-cause mortality information, are available by the end of study.

In the first project, we develop a novel joint model that allows the estimation of a time-

varying exposure on a survival outcome with a varying coefficient model. Specifically,

the flexible generalized odds rate models are applied to CVD mortality with an age-

dependent coefficient to account for nonlinear age varying effect of fitness.

For the second project, we consider the interval censored disease incidence time,

which is caused by the intermittent observations, and apply the Markov illness-death

regression models to study the transition intensities among three states: disease-free,

CVD and death, and estimate the covariate effects, such as age, fitness, smoking etc.,
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on these transitions. We adopt the Expectation-Maximization (EM) algorithm to

estimate the proposed models in the first two projects, and the covariance matrix of

the estimated parameters is approximated numerically based on the profile likelihood.

HSSC is a biomedical research collaborative consisting of four of the state’s largest

health systems. We are interested in comparing the antiretroviral treatment (ART)

for HIV patients in the HSSC. The HIV datasets in HSSC include both the time

to treatment or virologic failures and side effects after drug administration. In the

last project, we propose to model time to treatment or virologic failure and time to

severe side effects of ART under the competing risks model framework. A restricted

optimal treatment regime is defined based on cumulative incidence functions, where we

minimize the risk of treatment or virologic failures while controlling the risk of serious

drug-induced side effects. The estimation approach is derived using a penalized value

search method.

The proposed models and their estimation algorithms are validated through ex-

tensive simulation studies and applied to either the ACLS datasets or the HSSC HIV

datasets to achieve the purposes of the study.
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Chapter 1

Introduction and Motivations

Time to event data are commonly occurred in practice, such as medical and epi-

demiology studies. For example, in the Aerobics Center Longitudinal Study (ACLS)

database, we are interested in the time to CVD or all-cause mortality, and in the Health

Sciences South Carolina (HSSC) HIV dataset, after drug administration, the treatment

or virologic failure and incidence of serious side-effects are two competing risks, and

time to both events are of our interest.

In this part, we introduce the ACLS and HSSC datasets in Chapter 1.1 and Chap-

ter 1.2, respectively. Specifically, we focus on the data structures and the aims of our

projects for each database. Some preliminary data analysis results and motivations

are also given in Section 1.1 for Project 1 and Project 2 and Section 1.2 for Project 3.

Finally, the outline of the dissertation is illustrated in Chapter 1.3.

1.1 ACLS Database

The proposed research is based on the Aerobics Center Longitudinal Study (ACLS)

database, which involves patients in the Cooper Clinic in Dallas, TX. The patients went

to the clinic for periodic preventive medical examinations and for counseling regarding

health and lifestyle behaviors. At the time of their examination, ACLS was described

to the patients and the written informed consent for enrollment for the follow-up study

was obtained. Participants were mostly Caucasian (>95%) and well-educated.

A prospective study design is used to analyze the ACLS database. The main expo-

1
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sure variable is the cardiorespiratory fitness, which is quantified as the total duration

of a symptom limited maximal treadmill exercise test (Balke and Ware, 1959), is used

as the measure of physical activity (Physical Activity of Sports Medicine, 2013). All

tests were supervised by a physician and conducted in accord with standardized ex-

ercise testing procedures. It is a more reliable measure of recent activity levels than

self-reported values. Other potential confounders we consider in the model, including

age, gender, BMI, smoking status and family history of CVD, were recorded during

the initial visit.

During the study, participants had the cardiovascular disease (CVD) either reported

or diagnosed in each clinical visit. Fatal outcomes, including the CVD and all-cause

mortality, were from mortality surveillance, principally through the National Death

Index (NDI), which covers all deaths in the United States after 2004.

We have two different aims motivated by the ACLS database, and they are studied

separately in the first two projects. In Project 1, we are interested in studying the

longitudinal effect of cardiorespiratory fitness on time to CVD mortality, and adjust

other baseline covariates. In Project 2, the transitions among three states, includ-

ing disease-free, CVD and all-cause mortality, are studied through the illness death

modeling structure, and the covariates’ effects on the transitions are estimated.

Preliminary for Project 1

For the first project, we aim to evaluate the longitudinal fitness effect on CVD

mortality under the joint modeling framework. Patients in the ACLS had periodic

preventive medical examinations, including longitudinal measurements of cardiorespi-

ratory fitness (“fitness") where subjects completed a standard exercise test (Balke and

Ware, 1959), an objective measure for physical activity (Physical Activity of Sport-

s Medicine, 2013).

2
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We include 3,980 participants, who were enrolled in the ACLS during 1970 ∼ 1980

and had at least three follow-up visits by the end of year 2004. Among them about

145 (3.64%) participants died because of CVD. 437 patients are females and 3,543 of

them are males. The number of follow-up visits for each participant ranges from 3 to

30 with median equals to 5.

Based on the ACLS, Blair et al. (1996) discovered an inverse association between

the baseline fitness and CVD mortality. Similarly, we first look at the baseline data

for the preliminary analysis. A Cox proportional hazards (PH) model (David et al.,

1972) is fitted for CVD mortality, where we include the baseline fitness and adjust

BMI, family history of CVD, smoking status, gender and age as potential confounders.

Table 1.1 Estimated PH Models for ACLS Baseline Data

Without Interaction With Interaction
Variable Estimate StDev P value Estimate StDev P value
BMI 0.103 0.030 0.001 0.110 0.030 0.000
FamilyCVD 0.124 0.168 0.462 0.133 0.168 0.427
Smoke 0.218 0.233 0.349 0.230 0.233 0.323
Female -0.342 0.371 0.356 -0.348 0.371 0.347
AGE 0.117 0.011 0.000 0.181 0.035 0.000
Fitness -0.013 0.023 0.572 0.192 0.107 0.072
AGE×Fitness - - - -0.004 0.002 0.050

The estimated results are summarized in the left part of Table 1.1. The adjusted

baseline fitness is found to have a protective effect on CVD mortality (coefficient=

−0.013), but the effect is not significant (p value= 0.572). However, if we consider

age as an effect modifier of fitness and include the “age×fitness" in the model, as

summarized in the right part of Table 1.1, we find the interaction term is marginally

significant (p value= 0.050). This indicates that the effect of fitness on CVD mortality

changes over age.

Previous analysis based on the baseline fitness does not account for the whole

3



www.manaraa.com

20 30 40 50 60 70 80

10
20

30
40

Age in Years

Fi
tn

es
s

Figure 1.1 Profile Plots of Longitudinal Fitness.

pattern of fitness during a person’s life span. To study the longitudinal effect of fitness,

we need to use the repeated measures of fitness for each subject. Moreover, it is well

known that there are changes in the overall level of fitness with age. For example,

Figure 1.1 displays the longitudinal fitness profiles for all participants in the ACLS

over age. It can be seen that the mean fitness is around 20 and gradually decreases

with age.

Further, while the standard exercise test is an objective measure of physical activity

which is superior to self-report, the values appear to be subjected to measurement error.

This measurement error could be due to true measurement error in the equipment, or

small biological fluctuations in the subjects fitness level on the day of the measurement

(e.g., a bad night of sleep). Also considering the effect of fitness on CVD mortality

is modified by age, we seek to model the association between a time-varying covariate

that is subject to measurement error and a survival outcome with a varying-coefficient

joint model.

4



www.manaraa.com

Preliminary for Project 2

In the second project, we aim to study the CVD incidence and all-cause mortality in

the ACLS data under the illness-death modeling framework. Specifically, 5236 CVD-

free participants, who were enrolled in the ACLS during 1970 ∼ 1980, are included

in the analysis and being followed until the end of year 2004. During the study, each

participant had a sequence of follow-up visits, say 0 = v0 < v1 < · · · < vK < ∞, and

had the cardiovascular disease (CVD) either reported or diagnosed during each visit.

We also have both the death information and its major cause (CVD or other cause) for

each participant from mortality surveillance, principally through the National Death

Index (NDI).

As a result, each subject has the risk of developing CVD, or dies directly without

CVD. We have intermittent CVD diagnosis information for each subject, and the true

incidence time of CVD is either between two consecutive visits, say (vk−1, vk), or right

censored. The exact death information is obtainable through NDI, therefore, we assume

the death time is only subject to right censoring, and the only case that it is right

censored is because the patient is still alive at the end of study.

Figure 1.2 shows the distribution of the participants with regard to their disease

and death status at the end of the study. Among all the participants, 353 (6.74%)

have CVD diagnosed during the study and 274 out of them died eventually. There are

479 (9.15%) subjects died without CVD and 4404 (84.11%) were still alive and were

CVD-free at their last follow-up visits.

We are interested in studying the following three problems based on the ACLS

data: (1) estimate the transition intensities between the states including disease-free,

CVD and death; (2) compare the survival experience for subjects with and without

CVD; and (3) explore the covariate effects in each transition process. To achieve

5
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Figure 1.2 Illness-Death Process in ACLS Data.

these goals, we consider the Markov multi-state regression models and estimate the

transition intensities and covariate coefficients based on the intermittent observations

of CVD incidence.

1.2 HSSC HIV Dataset

Health Sciences South Carolina (HSSC) (https://www.healthsciencessc.org/)

is a biomedical research collaborative consisting of four of the state’s largest health

systems namely University Medical Center, Spartanburg Regional Healthcare System,

McLeod Health, AnMed Health, and Self Regional Healthcare. The HSSC database

includes several datasets that can be linked based on the subject and visit ID numbers.

The datasets we used include the patient’s demographic information, visit information,

diagnosis, medication order history and laboratory test results.

We are interested in comparing the antiretroviral treatment (ART) among the pop-

ulation with HIV diagnosis in HSSC. There are three most commonly used ART class-

6
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es: nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse tran-

scriptase inhibitors (NNRTIs) and protease inhibitors (PIs) (Günthard et al., 2016).

The drug class information can be searched on the website: http://bioportal.

bioontology.org/ontologies/RXNORM, and linked with the medication order history

dataset based on the RxNORM code.

In general, drugs in the same class share common properties, whereas drugs in dif-

ferent class have different treatment effects. For example, NNRTIs is associated with

faster virologic suppression and PIs recover more CD4 cells (Organization, 2016; Gün-

thard et al., 2016). Modern ART consists a combination of at least three agents from

two classes (Günthard et al., 2016). Common combinations such as “NNRTIs+NRTIs"

and “PIs+NRTIs" have also been compared in literature regarding to their treatment

effects measured via the level of virologic suppression or CD4 recovery. (Staszewski

et al., 1999; Haubrich et al., 2009; Smith et al., 2009; Borges et al., 2016).

The evaluation for ART requires considerations of both treatment effects and side

effects among different populations. The information about side effects of the drugs

is based on patients’ diagnosis records during their visits, where the ICD-9 or ICD-10

code are used to find the symptoms that related to the drug-induced side effects. In

Project 3, we aim to obtain the optimal treatment regime for different populations

that can minimize the risk of treatment or virologic failure while controlling the risk

of long-term side effects under a tolerable limit based on the HSSC HIV dataset.

Preliminary for Project 3

In the third project, we aim to find the optimal ART treatment for HIV patients

based on the HSSC HIV dataSET. Jiang et al. (2017) considered the optimal regime

of “NNRTIs+NRTIs" and “PIs+NRTIs" to maximize the longest initial treatment du-

ration based on a data set from HIV/AIDS clinical observational study. Similarly, we

7
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compare “NNRTIs+NRTIs" and “PIs+NRTIs" with respect to both their treatment or

virologic failures and the serious drug-induced side effects after the drug administration.

In HSSC data set, there are 426 patients who took drug combinations “NNR-

TIs+NRTIs" or “PIs+NRTIs" and had complete laboratory measures. We define

“risk 1" as treatment or virologic failure, which is monitored by either CD4 counts

(≤ 500 cells/mm3) or HIV viral load (≥200 copies/mL), and “risk 2" as the drug-

induced long-term side effects. Days to either risk, whichever came first after drug

administration, were recorded.

We compared the cumulative incidence functions of the two HIV treatments a-

mong patients below and above 50-year-old for risk 1 in Figure 1.3 and for risk 2 in

Figure 1.4, separately. Based on these curves, we found that “NNRTIs+NRTIs" has

generally lower risk of treatment or virologic failure but higher risk of having serious

side effects than “PIs+NRTIs" among younger patients. In contrast, among senior

patients, “NNRTIs+NRTIs" has lower risk of treatment or virologic failure before 1000

days after drug administration, but similar performance after 1000 days compared with

“PIs+NRTIs". Moreover, the risks of side effects with these two types of drugs reversed

compared with younger patients.

Therefore, the criteria to assign “NNRTIs+NRTIs" or “PIs+NRTIs" to each indi-

vidual are not consistent. In Project 3, we discuss an optimal treatment regime, which

can balance between the treatment efficacy and side effects, under the competing risks

framework. Specifically, we define a restricted optimal treatment regime that mini-

mizes the t-year cumulative incidence function of the main risk while controlling the

t-year cumulative incidence of the other risk under a predetermined level.

8
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Figure 1.3 Risk 1 Cumulative Incidence Functions (left: age < 50, right: age ≥ 50)
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Figure 1.4 Risk 2 Cumulative Incidence Functions (left: age < 50, right: age ≥ 50)

1.3 Outline of Dissertation

In the rest of the dissertation, we present the proposed three projects separately in

Chapters 2, 3 and 4. In each part, we discuss the proposed models and present the

details of the estimation methods for each project.

In Chapter 2, we develop a novel joint model that allows the estimation of a time-

varying exposure on a survival outcome with a varying coefficient model. The flexible
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generalized odds rate models are applied to CVD mortality with an age-dependent co-

efficient to account for nonlinear age varying effect of fitness. Our model uses a mixed

effects model for the longitudinal process, and cubic B-splines to estimate the varying

coefficient function. The proposed joint model is estimated based on the Expectation-

Maximization (EM) algorithm, where the numerical integrals with respect to the ran-

dom effects are approximated by a modified pseudo adaptive Gaussian-Hermite quadra-

ture in the E-step. The covariance matrix is approximated numerically based on profile

likelihood. All of the estimation details are presented in Section 2.2. The performance

of the proposed algorithm is validated through the extensive simulation studies in

Section 2.3. Finally, it is applied to a cohort in the ACLS in Section 2.4.

Chapter 3 investigates the transitions to disease or death under the semi-competing

risks model. We propose to study the process of developing cardiovascular disease

(CVD) and all-cause mortality in the ACLS data, and focus on the covariate effects,

such as age, fitness, smoking etc., in the transitions to the CVD or death states. Due

to the intermittent observations of the CVD incidence time, we have both interval

censored disease time and right censored death time. The details of the estimation

procedures are discussed in Section 3.2, Where we propose to use the Markov illness-

death regression models and apply the expectation-maximization (EM) algorithm to

derive a self-consistent estimator for the model. The variance of the estimates are ap-

proximated based on the profile likelihood function. The proposed method is evaluated

through extensive simulation studies in Section 3.3, and illustrated by the application

to the ACLS data in Section 3.4.

It is well accepted that individualized treatment regimes may have potential benefit

to improve the clinical outcome of interest. However, the positive treatment effects of-

ten accompany with certain side effects. That is, when choosing the optimal treatment

regime for a patient we need to consider both efficacy and safety issues. In Chapter 4,

10
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we propose to model time to a primary event of interest and time to severe side effects

of treatment by a competing risks model and define a restricted optimal treatment

regime based on cumulative incidence functions. The estimation approach is presented

in Section 4.2 and investigated through numerical studies. Specifically, a penalized

value search method is derived and evaluated through extensive simulations in Sec-

tion 4.3. The proposed method is applied to an HSSC HIV dataset in Section 4.4,

where we minimize the risk of treatment or virologic failures while controlling the risk

of serious drug-induced side effects.

Discussions and conclusions are made for each project at the end of each part.

Finally, some summaries and future works are discussed in Chapter 5.
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Chapter 2

A Generalized Odds Rate Joint Model for

Varying Coefficients with Time-varying

Exposures

Promoting a physically active lifestyle is a major national public health priority.

Physical inactivity, mainly due to a sedentary lifestyle, has been shown to have a

positive association with cardiovascular disease (CVD) mortality (Blair et al., 1996;

Kohl 3rd, 2001; Mora et al., 2007; Nocon et al., 2008). The Aerobic Center Longitudinal

Study (ACLS) enrolled 3,980 participants from the Cooper Clinic in Dallas, TX from

1970 ∼ 1980 with follow-up till 2004. Patients in the ACLS had periodic preventive

medical examinations, including longitudinal measurements of cardiorespiratory fitness

(“fitness") where subjects completed a standard exercise test (Balke and Ware, 1959),

an objective measure for physical activity (Physical Activity of Sports Medicine, 2013).

It is well known that physical fitness has an impact on cardiovascular disease (CVD)

mortality. For example, an inverse association between the baseline fitness and CVD

mortality was discovered based on the ACLS by Blair et al. (1996). It is not known,

however, how the effect of fitness on CVD mortality varyies with age. Based on the

preliminary data analysis in Section 1.1, the effect of fitness on CVD mortality is

modified by age. Moreover, we would like to utilize the repeated measures of fitness in

the ACLS, other than the baseline data only, to represent participants’ fitness trajectory

and study the longitudinal effect of fitness on CVD mortality.

12
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Therefore, we seek to model the association between a time-varying covariate on

a survival outcome with a varying-coefficient model. In practice it is challenging to

capture the association between a time-varying covariate and a survival outcome with

a varying-coefficient model. Previous studies focused on either estimation of varying

coefficients for time-independent variables (Cai and Sun, 2003; Tian et al., 2005), or

fixed coefficients for time-dependent variables (Fisher and Lin, 1999; Zeng and Lin,

2006). To the best of our knowledge, there’s no literature on survival models that

consider both a time-varying covariate and its varying-effect over another variable.

What complicates our situation more is that the exposure of interest is a endogeneous

covariate that is subject to measurement error, where the previous methods do not

apply.

The most popular tools in modeling the association between a survival outcome

and an endogeneous covariate with measurement error are joint models. Specifically,

a mixed effects model with normal random effects is assumed for the longitudinal

observations and standard survival models are used for the survival outcome. There

have been plenty of work on joint models which combines the linear mixed model

with Cox proportional hazards (PH) model (Wulfsohn and Tsiatis, 1997; Bycott and

Taylor, 1998; Zeng et al., 2005; Zeng and Cai, 2005). Further, the proportional odds

(PO) joint model has also been studied in the literature when the PH assumption is

violated (Andrinopoulou et al., 2014). Various of extensions of joint models have been

made to account for complex data structures in practice, with considerations of multiple

longitudinal outcomes (Song et al., 2002; Brown et al., 2005; Rizopoulos and Ghosh,

2011; Moreno-Betancur et al., 2017), competing risks (Elashoff et al., 2008; Huang

et al., 2011), and cure rate models (Yu et al., 2004; Brown and Ibrahim, 2003). More

overviews and extensions can be found in Tsiatis and Davidian (2004) and Rizopoulos

(2012).
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The existing joint models do not allow varying-coefficients, so they cannot be used

to estimate the age-related association between fitness and CVD mortality. Therefore,

we develop a novel joint model framework considering the following three features:

(1) longitudinal process of fitness, (2) survival process of CVD mortality, and (3) the

age-related fitness effects. For the longitudinal fitness process, we assume a flexible pre-

specified time function with random coefficients to accommodate for subject-specific

longitudinal trajectories over time. For the survival process, we propose to incorporate

the generalized odds rate (GOR) model (Dabrowska and Doksum, 1988; Scharfstein

et al., 1998; Zhou et al., 2017), including the PH model and the PO model (Bennett,

1983) as special cases. To investigate the age-related fitness effect on CVD mortality,

we include a novel age-dependent varying coefficient for longitudinal fitness in the

survival model. A clear pattern of the effect of fitness on CVD mortality with age can

be described by the estimated nonlinear varying coefficient. In addition, based on the

estimated point-wise confidence intervals for the varying coefficient, an age period for

fitness being a significant protective effect for CVD mortality can be detected as well.

The proposed model can improve understanding of how age-related changes in fitness

effect CVD mortality, which can provide direct guidance in behavior consultation.

The rest of the part is organized as follows. The notations and model definitions

are first introduced in Section 2.1. Specifically, the details of the estimation procedures

are presented in Section 2.2, which includes the derivation of the complete likelihood

function, calculation of the conditional expectations and maximization steps. The

complete EM algorithm and the corresponding variance estimation are presented at

the end of the section. The extensive simulation studies are performed in Section 2.3.

To study the nonlinear age-dependent effect of fitness on the CVD mortality, we apply

the proposed model and method to the ACLS data in Section 2.4. The final discussions

and conclusions are summarized in Section 2.5.
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2.1 GOR Joint Models

Let Ti denote the failure time for subject i, i = 1, · · · , n. The distribution of Ti

depends on a vector of baseline covariates Zi, age Ai(·) and a time-varying predictor

Wi(·). The filtration of Wi(·) is denoted by Wi(t) = {Wi(s) : s ≤ t}, which include the

history of Wi(·) up to time t. Let Λi(·) denote the cumulative hazard function of Ti.

Under the generalized odds rate (GOR) model, we have

Λi(·) = Λ(t|Zi, Ai,Wi(t)) = Gr

{∫ t

0
λ0(s) exp[Ziβ + ψ(Ai(s))Wi(s)]ds

}
,

where Gr{·} is a pre-specified increasing transformation function, which is indexed by

a non-negative argument r. λ0(t) is the baseline hazard function and will be estimated

non-parametrically. β is the vector of coefficients for Zi and ψ(Ai(s)) is the age-

dependent varying coefficient for Wi(s), where Ai(s) is the age at time s and ψ(s) is a

smoothing function. For example, a possible transformation is Gr(x) = 1
r

log(1 + rx)

when r > 0 and Gr(x) = x when r = 0, which reduces to the PH model when r = 0

and the PO model when r = 1. We approximate the smoothing function using cubic

B-splines, with ψ(s) = ∑L
l=1 γlBl(s) where Bl(·) l = 1, · · · , L, are the B-spline basis

functions.

The whole history of the longitudinal marker Wi(t) is not obtainable in reality.

Instead, we can only observe Yi(·), which is a contaminated version of Wi(·), at a

sequence of intermittent follow-up visit times denoted by 0 = ti,0 < ti,1 < · · · < ti,mi
.

We assume the following random effects model for Yi = (Yi,1, · · · , Yi,mi
), where Yi,j =

Yi(ti,j) denotes the observation for subject i at ti,j, j = 1, · · · ,mi,

Yi(t|bi) = Wi(t|bi) + ε(t) = g′(t)bi + ε(t),

where g(t) is a d-dimensional vector of known functions of t, for example, g(t) = (1, t)′

corresponding to a linear function of t with d = 2 and bi = (bi1, · · · , bid) is a d-

dimensional vector of random effects and is assumed to jointly follow multivariate
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normal distribution MVN(µ,D), where µ and D are the mean vector and d × d

variance-covariance matrix of bi. The error terms ε = (εi,1, · · · , εi,mi
), where εi,j =

ε(ti,j), j = 1, · · · ,mi, are assumed to follow N(0, σ2).

2.2 Estimation Procedures

Complete Likelihood Function

We observe Vi = min(Ti, Ci) with a censoring indicator δi = I(Ti ≤ Ci) for

i = 1, · · · , n, where Ci is the right censoring time. The observed data for subject

i can be denoted as Oi = (Vi, δi, Ai, Zi, ti,Yi) and the parameters to be estimated in-

clude θ = (β,γ, λ0,µ,D, σ
2), where γ = (γ1, · · · , γL) is the vector of coefficients in

the B-splines. Note, the notation Λ(t|Zi, Ai,Wi(t)) and Λ(t|Oi, bi) are equivalent. Let

S(t|Oi, bi) denote the survival function corresponding to Λ(t|Oi, bi). Under the GOR

model defined in Section 2.1, S(t|Oi, bi) can be written as the marginal survivor func-

tion of a gamma frailty model. That is, S(t|Oi, bi) =
∫
S(t|Oi, φi, bi)f(φi)dφi where

S(t|Oi, φi, bi) = exp
{
−φi

∫ t

0
λ0(s)eZiβ exp[ψ(Ai(s))Wi(s|bi)]ds

}
,

and f(·) is the gamma density with mean of 1 and variance r.

The complete likelihood function of θ given the observed data O = (O1, · · · , On),

the frailty terms φ = (φ1, · · · , φn) and the random effects b = (b1, · · · , bn) can be

written as:

Lc(θ|O,φ, b) =
n∏
i=1
p(Vi, δi|φi, bi;β,γ, λ0)× p(Yi|bi;σ2)× p(bi|µ,D)× f(φi)

=
n∏
i=1

{
φiλ0(Vi)eZiβη(Vi|Ai, bi;γ)

}δi × exp
{
−φi

∫ Vi

0
λ0(s)eZiβη(s|Ai, bi;γ)ds

}

× (2πσ2)−
mi
2 exp

{
− 1

2σ2 (Yi −Gibi)′(Yi −Gibi)
}

× (2π)−
d
2 |D|−

1
2 exp

{
−1

2(bi − µ)′D−1(bi − µ)
}
× f(φi), (2.1)
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where Gi = (g(ti,1), · · · , g(ti,mi
))′ and η(s|Ai, bi;γ) = exp{ψ(Ai(s))Wi(s|bi)}.

The observed likelihood function L(θ|O) can be derived by integrating the frailty

terms φ and the random effects b out of (2.1). Direct maximization of the observed

likelihood L(θ|O) is difficult due to the numerical integrals regarding to the random

effects. Therefore, we apply the EM algorithm to estimate the proposed joint model,

and assume the baseline function λ0(·) to be nonparametric. The complex form of

the likelihood function and the infinite dimension of the parameter space make this a

challenging computation task.

Conditional Expectations

After dropping the terms that do not contain θ, the complete log-likelihood function

can be written as the summation of three distinct parts, i.e.

lc(θ|φ, b) = lc1(λ0,β,γ|φ, b) + lc2(σ2|b) + lc3(µ,D|b),

where

lc1(λ0,β,γ|φ, b) =
n∑
i=1

δi[log(λ0(Vi)) + Ziβ + log(η(Vi|Ai, bi;γ))]

− φi
∫ Vi

0
λ0(s)eZiβη(s|Ai, bi;γ)]ds,

lc2(σ2|b) =
n∑
i=1
− mi

2 log(2πσ2)− 1
2σ2 (Yi −Gibi)′(Yi −Gibi), and

lc3(µ,D|b) =
n∑
i=1
− d

2 log(2π)− 1
2 log(|D|)− 1

2(bi − µ)′D−1(bi − µ).

Let Q(θ;θ(k)) denote the conditional expectation of the complete log-likelihood

function lc(θ|φ, b) given observed data O = (O1, · · · , On) and current estimates θ(k).

Similar to previous arguments, Q(θ;θ(k)) can be written as the summation of three
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distinct parts,

Q(θ;θ(k)) =Eb
{
Eφ [lc(θ|φ, b)|O, b] |O,θ(k)

}
=Eb

{
Eφ

[
lc1(λ0,β,γ|φ, b)|b,O,θ(k)

]
|O,θ(k)

}
+ Eb

{
lc2(σ2|b)|O,θ(k)

}
+ Eb

{
lc3(µ,D|b)|O,θ(k)

}
=Q1(λ0,β,γ;θ(k)) +Q2(σ2;θ(k)) +Q3(µ,D;θ(k)). (2.2)

To evaluate the conditional expectation Q(θ;θ(k)), we need to calculate both

E(φi|bi, Oi,θ
(k)) and the conditional expectations of functions of bi given Oi and cur-

rent estimate θ(k). The conditional distribution of φi given bi, Oi and θ(k) is

p(φi|bi, Oi) ∝ φδi
i × exp

{
−φi

∫ Vi

0
λ0(s)eZiβη(s|Ai, bi;γ)ds

}
× f(φi).

Plugging in the density for Gamma(r, 1/r) and doing some algebra, it can be shown

that the resulted conditional distribution is a gamma distribution with shape parameter

δi + 1/r and scale parameter [1/r +
∫ Vi

0 λ0(s)eZiβη(s|Ai, bi;γ)ds]−1.

Expectations with respect to the conditional distribution of bi given Oi and θ(k)

can be approximated using a modified version of the adaptive Gaussian-Hermite (GH)

quadrature. To achieve that, we first need to find the kernel of the conditional distri-

bution of bi. From the joint distribution in Equation (2.1), we have

f(bi|Oi,θ
(k)) ∝

[
1
r

+
∫ Vi

0
λ0(s)eZiβη(s|Ai, bi;γ)ds

]−(δi+ 1
r

)

× [η(Vi|Ai, bi;γ)]δi

× exp
{
− 1

2σ2 [b′iG′iGibi − 2Y ′iGibi]
}

exp
{
−1

2(b′iD−1bi − 2µ′D−1bi)
}

∝ Si(bi)× exp
{
−1

2(bi − µ̃i)′Σ̃i
−1(bi − µ̃i)

}
, (2.3)

where

Si(bi) =
[

1
r

+
∫ Vi

0
λ0(s)eZiβη(s|Ai, bi;γ)ds

]−(δi+ 1
r

)
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is the survival part that depends on bi; and the rest is proportional to a Normal ker-

nel with mean µ̃i′ =
[
δiψ(Ai + Vi)g′(Vi) + 1

σ2Y
′
iGi + µ′D−1

]
Σ̃i and covariance matrix

Σ̃i = [D−1 +G′iGi/σ
2]−1.

Let Ki denote the kernel of the conditional distribution in Equation (2.3). The

conditional expectation of any function h(bi) can be calculated through

E[h(bi)|θ(k), Oi] =
∫ ∞
−∞

h(bi)p(bi|θ(k), Oi)dbi

=
∫∞
−∞ h(bi)Kidbi∫∞
−∞Kidbi

=
∫∞
−∞ h(bi)Si(bi)× exp

{
−1

2(bi − µ̃i)′Σ̃i
−1(bi − µ̃i)

}
dbi∫∞

−∞ Si(bi)× exp
{
−1

2(bi − µ̃i)′Σ̃i
−1(bi − µ̃i)

}
dbi

(2.4)

=
∫∞
−∞ h(µ̃i +

√
2Σ̃i

1/2
ri)Si(µ̃i +

√
2Σ̃i

1/2
ri)× e−r

′
iridri∫∞

−∞ Si(µ̃i +
√

2Σ̃i
1/2
ri)× e−r

′
iridri

, (2.5)

where the transformation ri = 1√
2Σ̃i

−1/2(bi − µ̃i) was made from (2.4) to (2.5). Both

of the numerator and the denominator in (2.5) can be approximated by the Gaussian-

Hermite (GH) quadrature
∫∞
−∞ f(x)e−x2

dx ≈ ∑K
j=1 πjf(xj), where xj’s and πj are the

abscissas and weights under K nodes given by the GH quadrature.

Maximization

In the maximization steps, we need to maximize the expectation of the log-likelihood

functions Q1(λ0(·),β,γ;θ(k)), Q2(σ2;θ(k)) and Q3(µ,D;θ(k)) described in Equation

(2.2), and update the parameters θ(k+1).

SinceQ1(λ0(·),β,γ;θ(k)) involves the infinite dimensional parameter λ0(·), we adop-

t a profile approach. Specifically, we first solve the partial derivative ofQ1(λ0,β,γ;θ(k))

with respective to λ0(·) and derive

λ̃0(t;β,γ) =
∑n
i=1 δiI(Vi = t)∑n

i=1 I(Vi ≥ t)eZiβEbi
{E(φi|bi, Oi,θ(k))η(t|Ai, bi;γ)|θ(k), Oi}
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as a function of (β,γ).

Then the Newton-Raphson algorithm is applied to maximize the expectation of the

profile log-likelihood function Q1(λ̃0(t;β,γ),β,γ;θ(k)).

The gradient functions are

∂

∂βj
Q1(β,γ) =

n∑
i=1

δi

 λ̃0
βj (Vi;β,γ)
λ̃0(Vi;β,γ)

+ Zij

−
∫ Vi

0

[
λ̃0

βj (s;β,γ) + λ̃0(s;β,γ)Zij
]
H1
i (s)ds,

∂

∂γl
Q1(β,γ) =

n∑
i=1

δi

{
λ̃0

γl(Vi;β,γ)
λ̃0(Vi;β,γ)

+Bl(Ai + Vi)g′(Vi)E(bi|θ(k), Oi)
}

−
∫ Vi

0
λ̃0

γl(s;β,γ)H1
i (s) + λ̃0(s;β,γ)Bl(Ai + s)H2

i (s)ds,

where

H1
i (t) = eZiβEbi

{E(φi|bi, Oi,θ
(k))η(t|Ai, bi;γ)|θ(k), Oi},

H2
i (t) = eZiβEbi

{g′(t)biE(φi|bi, Oi,θ
(k))η(t|Ai, bi;γ)|θ(k), Oi},

and

λ̃0
βj (t;β,γ) = ∂

∂βj
λ̃0(t;β,γ) = − [∑n

i=1 δiI(Vi = t)]× [∑n
i=1 I(Vi ≥ t)ZijH1

i (t)]
[∑n

i=1 I(Vi ≥ t)H1
i (t)]2

,

λ̃0
γl(t;β,γ) = ∂

∂γl
λ̃0(t;β,γ) = − [∑n

i=1 δiI(Vi = t)]× [∑n
i=1 I(Vi ≥ t)Bl(Ai + t)H2

i (t)]
[∑n

i=1 I(Vi ≥ t)H1
i (t)]2

.

After the Newton-Raphson algorithm is converged, parameters (β,γ) are updated as

(β(k+1),γ(k+1)), and the baseline hazard function is updated as

λ
(k+1)
0 (t) = λ̃0(t;β(k+1),γ(k+1)).

From Q2(σ2;θ(k)) and Q3(µ,D;θ(k)), the parameters can be solved in closed forms

and we have the following updating formula:

µ(k+1) =
n∑
i=1

E[bi|θ(k), Oi]/n,

D(k+1) =
n∑
i=1

E[bib′i|θ(k), Oi]/n, and

(σ2)(k+1) =
∑n
i=1

∑mi
j=1 E

{
(Yi −Gibi)′(Yi −Gibi)|θ(k), Oi

}
∑n
i=1 mi

.
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EM Algorithm

We propose to implement the Expectation Maximization (EM) algorithm to derive

the maximum likelihood estimator (MLE) of θ. The complete algorithm is described

below.

Give initial values θ(0) based on a two-step approach as follows:

Step 1: fit a mixed effect model Y (t|b) = g′(t)b + ε(t), and use its estimated mean

and covariance as µ(0) and D(0), and the variance of error term as (σ2)(0). This can be

realized by using the “nlme" package in R.

Step 2(a): for a pre-specified r, fit the GOR model that only include Z as the covariates

and use the estimated coefficients as β(0). This can be done using the R package

“TransModel". The initial values for γ(0) are set to be 0.

Step 2(b): obtain the baseline survival estimate Ŝ(0)(t) from the model in Step 2(a) by

predicting the survival curves for Z = 0, and λ(0)
0 (t) is the gradient of − log(Ŝ(0)(t)).

In the kth iteration,

E-step: approximate the conditional expectations described in Section 2.2 based on O

and current estimate θ(k) using Gaussian-Hermite quadrature.

M-step: maximize the expectation of the log-likelihood functions Q1(λ0(·),β,γ;θ(k)),

Q2(σ2;θ(k)) and Q3(µ,D;θ(k)) and update the parameters θ(k+1) as described in Sec-

tion 2.2.

Iterate the E-step and M-steps until ∑(θ(k+1) − θ(k))2 < 0.001 or k > 100.

Variance Estimation

After the EM algorithm converges, we have the maximum likelihood estimate θ̂.

Let θ∗ = θ \ λ0 denote the vector of all the parameters except the baseline hazard

function λ0. Suppose the length of the vector θ∗ is m, the variance-covariance matrix
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of θ̂∗ is a m×m matrix, and can be estimated by inverting the observed information

matrix based on the profile likelihood.

To be specific, we define pl(θ∗) = maxλ0 n
−1∑n

i=1 pli(θ∗, λ0) as the logarithm of

the profile likelihood for θ∗, where pli(θ∗, λ0) denote the logarithm of the observed

likelihood for subject i, i = 1, · · · , n. Let I(θ∗) = {vll′}, l, l′ = 1, · · · ,m denote the

observed information matrix for θ̂∗. The element vll′ can be approximated by the

second-order numerical difference of pl(θ∗). Specifically,

vll′ = (q(θ̂∗ + hnel)− q(θ̂∗))′(q(θ̂∗ + hnel′)− q(θ̂∗))
h2
n

,

where q(θ̂∗) = (pl1(θ̂∗), · · · , pln(θ̂∗)) is the vector of profile likelihood functions being

evaluated at θ̂∗, el is the unit vector of length m that has the lth element being 1 and

other elements being 0, and hn = O(1/
√
n) is a pre-specified constant that is bounded

by 1/
√
n.

2.3 Simulation Study

We generate data for the proposed joint models. For the survival time, we generate

from the GOR model

S(t|Zi) =


exp{−

∫ t
0 λ0(s) exp [Ziβ + ψ(Ai + s)×Wi(s)] ds}, r = 0,{

1 + r
∫ t

0 λ0(s) exp [Ziβ + ψ(Ai + s)×Wi(s)] ds
}−1/r

, r > 0.

The baseline distribution for λ0(·) is assumed to be either Weibull with shape and

scale parameters equals 2, or Lognormal with log mean 0 and log standard deviation

1. The varying coefficient function in the survival model is ψ(t) = −0.2 sin(t). The

baseline age Ai is generated from the standard normal distribution and two baseline

covariates are included: Z1 follows Uniform (0,2) and Z2 follows Bernoulli (0.5). Coeffi-

cients for Z = (Z1, Z2) are set to be β = (1,−1). Different models with transformation

parameter r = 0, 0.5, 1 and 2 are used.
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A linear function for the fitness over time is assumed, i.e., Wi(t) = bi0 + bi1t. The

random effects bi = (bi0, bi1) ∼ N(µ,D), where µ = (2, 1) and the covariance matrix

D = {vij} is assumed to be vij = I(i = j) + 0.5I(i 6= j), that is, the variances are 1

and the covariance is 0.5. Variance of the error terms is σ2 = 0.5.

Right censoring time C is generated from the uniform distribution, U(0, a), where

a is adjusted to have 50% right censoring data. Subject i is assumed to have visits

0 = ti0 < ti1 < · · · < tiνi
< min{Ti, Ci}, and the length between two consecutive visits

are set to be 0.1. Sample size of n = 500 is used and 1000 replications are made for

each setting.

We use 5 nodes are in the gaussian hermite quadrature and L = 3 knots at the

percentiles for the B-splines in estimating the varying coefficient function φ(t). The

simulation results are summarized in Table 2.1 for Weibull baseline distribution and

in Table 2.2 for Lognormal distribution, where we report the bias, empirical standard

deviation (StDev), mean of the estimated standard error (StdErr) and the coverage

probability (CP) of the 95% Wald confidence intervals. The bias of all the parameters

are very small, the estimated standard errors based on the profile likelihood are close

to the empirical estimates and the CP is close to the nominal level 0.95. The estimated

baseline cumulative hazard functions are compared with the true curves in Figures 2.1

and 2.2 for Weibull baseline distribution and in Figures 2.5 and 2.6 for Lognormal

baseline distribution. The varying coefficient functions ψ(·) are plotted in Figures 2.3

and 2.4 for Weibull baseline distribution and in Figures 2.7 and 2.8 for Lognormal

baseline distribution. The solid lines in the plots are the mean of estimates, dashed

lines are the true curve and the dotted lines are the 2.5 and 97.5 quantiles of the

estimates. All the curves are found to be close to the truth. More settings with regard

to different functions for the varying coefficient, different sample sizes and censoring

proportions have been performed as well, which give similar findings.
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Table 2.1 Simulation Results for Joint Models (Weibull)

Variable Bias StDev StdErr CP Bias StDev StdErr CP
r=0 r=0.5

β1 0.005 0.125 0.124 0.944 -0.003 0.139 0.145 0.954
β2 -0.013 0.138 0.141 0.948 -0.005 0.169 0.165 0.946
µ0 -0.001 0.047 0.048 0.952 0.003 0.046 0.048 0.964
µ1 -0.006 0.059 0.060 0.952 -0.008 0.058 0.057 0.944
σ2 -0.004 0.010 0.010 0.934 -0.005 0.009 0.010 0.912
V11 -0.007 0.069 0.075 0.968 -0.011 0.074 0.073 0.940
V12 0.012 0.066 0.065 0.940 0.014 0.062 0.062 0.952
V22 -0.008 0.099 0.099 0.938 -0.005 0.098 0.093 0.944

r=1 r=2
β1 0.009 0.170 0.164 0.942 0.000 0.203 0.194 0.946
β2 -0.007 0.188 0.187 0.946 0.025 0.228 0.223 0.940
µ0 0.000 0.049 0.048 0.946 0.002 0.047 0.047 0.944
µ1 -0.003 0.060 0.056 0.926 -0.001 0.058 0.054 0.926
σ2 -0.006 0.009 0.009 0.886 -0.006 0.008 0.008 0.884
V11 -0.008 0.071 0.072 0.942 -0.017 0.069 0.071 0.932
V12 0.021 0.062 0.062 0.938 0.013 0.058 0.059 0.964
V22 0.007 0.092 0.091 0.948 -0.007 0.087 0.084 0.924

2.4 Real Data Analysis

We include patients who were enrolled between 1970 and 1980, and being followed

till 2004 in the Aerobics Center Longitudinal Study (ACLS) database. The main expo-

sure variable is the cardiorespiratory fitness (fitness), which is quantified as the maxi-

mal treadmill time in minutes during a symptom limited exercise test. All tests were

supervised by a physician and conducted in accord with standardized exercise testing

procedures. As an objective measure of physical activity, fitness is a more reliable mea-

sure of recent activity levels than self-reported values. Other potential confounders we

adjust in the model include gender, BMI, smoking and family history of CVD. Fatal

outcomes (e.g. CVD mortality) were from mortality surveillance, principally through

the National Death Index (NDI).

In order to assess the longitudinal effect of fitness on the CVD mortality, we apply
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Figure 2.1 Estimated Baseline Cumulative Hazard Curves for Weibull Distribution (left:
r = 0, right: r = 0.5).
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Figure 2.2 Estimated Baseline Cumulative Hazard Curves for Weibull Distribution (left:
r = 1, right: r = 2).

the proposed model to the ACLS Data set. There are 3,980 patients and among them

about 145 (3.64%) participants died because of CVD by year 2004. 437 patients are

females and 3,543 of them are males. The number of follow-up visits for each participant

ranges from 3 to 30 with median equals to 5.

We assume a linear form for the fitness trajectory over time. Similar to the simula-

tion, we use Gaussian Hermite quadrature with 5 nodes for the approximation in the
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Figure 2.3 Estimated Varying Coefficient Curves ψ(A(t)) for Weibull Distribution (left:
r = 0, right: r = 0.5).
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Figure 2.4 Estimated Varying Coefficient Curves ψ(A(t)) for Weibull Distribution (left:
r = 1, right: r = 2).

E-step, which lead to similar results to using a larger number of nodes. We apply cubic

B-splines with k knots being placed at percentiles to estimate the varying coefficient,

where the number k can be selected based on the Akaike information criterion (AIC)

in practice. For illustration, in Figure 2.9 we plot the AIC versus number of knots for

three different models: a PH model (r = 0), a PO model (r = 1) and a variant of PO

model (r = 2). Based on the curves, the PH model with 4 knots result in the smallest
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Table 2.2 Simulation Results for Joint Models (Lognormal)

r=0 r=0.5
Variable Bias StDev StdErr CP Bias StDev StdErr CP
β1 0.006 0.117 0.123 0.960 0.005 0.149 0.144 0.938
β2 -0.001 0.130 0.139 0.948 -0.007 0.163 0.164 0.946
µ0 0.000 0.050 0.050 0.938 0.004 0.050 0.049 0.954
µ1 -0.006 0.093 0.083 0.924 -0.003 0.092 0.075 0.904
σ2 -0.002 0.014 0.015 0.944 -0.002 0.013 0.013 0.944
V11 -0.010 0.078 0.079 0.938 -0.009 0.076 0.077 0.938
V12 0.007 0.079 0.090 0.972 0.014 0.078 0.080 0.944
V22 0.003 0.159 0.159 0.942 0.010 0.135 0.135 0.958

r=1 r=2
β1 0.008 0.165 0.160 0.932 -0.013 0.189 0.189 0.956
β2 0.008 0.184 0.182 0.938 0.007 0.214 0.217 0.944
µ0 0.003 0.046 0.049 0.960 0.004 0.047 0.048 0.938
µ1 -0.001 0.082 0.068 0.894 0.001 0.075 0.061 0.896
σ2 -0.004 0.011 0.011 0.948 -0.007 0.009 0.009 0.876
V11 -0.009 0.074 0.075 0.938 -0.011 0.072 0.073 0.954
V12 0.018 0.067 0.073 0.962 0.020 0.064 0.066 0.946
V22 0.009 0.112 0.115 0.956 0.014 0.099 0.099 0.944

AIC.

Table 2.3 ACLS Data Analysis: Parameter Estimates in the PH Joint Model

Parameter Estimate StDev P value
BMI 0.092 0.029 0.002
FamilyCVD 0.198 0.179 0.269
Smoke 0.167 0.234 0.476
Female -0.442 0.386 0.253
µ0 18.337 0.073 < 0.001
µ1 0.063 0.005 < 0.001
σ2 3.984 0.022 < 0.001
v11 19.056 0.508 < 0.001
v12 -0.280 0.026 < 0.001
v22 0.052 0.002 < 0.001

We summarize the estimated coefficients in the PH model with 4 knots in Table 2.3.

Based on the results, higher BMI will increase the risk of CVD mortality and females
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Figure 2.5 Estimated Baseline Cumulative Hazard Curves for Lognormal Distribution
(left: r = 0, right: r = 0.5).
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Figure 2.6 Estimated Baseline Cumulative Hazard Curves for Lognormal Distribution
(left: r = 1, right: r = 2).

generally have lower risk of dying from CVD. Smoking and family history are positively

associated with the risk of dying from CVD. All the terms in the longitudinal process

are found to be highly significant here, indicating a significant linear trend of fitness

over time. The baseline cumulative hazard curve is plotted in Figure 2.10 left panel,

which is a step function with jumps at the event times.

Based on the estimated γ coefficients in B-splines, we can first test the hypothesis
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Figure 2.7 Estimated Varying Coefficient Curves ψ(A(t)) for Lognormal Distribution
(left: r = 0, right: r = 0.5).
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Figure 2.8 Estimated Varying Coefficient Curves ψ(A(t)) for Lognormal Distribution
(left: r = 1, right: r = 2).

“H0: the varying coefficient is constant over age", which is equivalent to H0 : Mγ = 0,

where

M =



1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1
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Figure 2.9 ACLS Data Analysis: Choose Knots and r Based On AIC.

when we apply 4 knots. The test statistic (M γ̂)(MV̂γM
′)−1(M γ̂)′ follows the chi-

squared distribution with 4 degree of freedom under H0, where V̂γ is the estimated

covariance matrix of γ̂. Specifically, the test statistic is calculated as 138.12 under the

fitted model, and is greater than χ2
.95,4 = 9.49. Therefore, we can conclude that the

fitness effect on CVD mortality is significantly different over age.

5 10 15 20 25 30

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Follow−up Time (Years)

B
as

el
in

e 
C

um
ul

at
iv

e 
H

az
ar

d 
Fu

nc
tio

n

30 40 50 60 70 80

−0
.2

0
−0

.1
5

−0
.1

0
−0

.0
5

0.
00

0.
05

Age

Va
ry

in
g 

C
oe

ffi
ci

en
t ψ

(A
ge

)

Figure 2.10 ACLS Data Analysis: Estimated Baseline Cumulative Hazard (left) and
Age-dependent Varying Coefficient for Fitness (right).
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The age-dependent varying coefficient curve with the 95% pointwise confidence

intervals is plotted in Figure 2.10 right panel. Based on the curve, physical activity

has significant protective effects on CVD mortality till age 70, no significant impact

from 70 to 80. An explanation for this finding could be that after 70, age genetic

factors take over as the dominate reason for CVD related mortality, and that the

individuals’ physical activity isn’t really a factor anymore. The protective effect of

physical activity is the strongest around age 40, suggesting that more exercise during

middle-aged population is the most effective in reducing CVD associated mortality.

2.5 Discussions and Conclusions

We proposed a joint model with an age-dependent varying coefficient for GOR

model with a longitudinal endogenous covariate measured with error. The age-related

varying coefficient was flexibly modeled with cubic B-splines. The EM algorithm is

applied in estimating the proposed joint model, while the variance of the estimates are

approximated based on the profile likelihood function. The estimation methods are

discussed and evaluated by simulation studies.

The ACLS dataset is used to illustrate the usage of the model, where we study

the longitudinal effect of fitness on the CVD mortality. The effect of fitness on CVD

mortality is found to change over age, and the trajectory can be clearly described by

the estimated varying coefficient curve as illustrated in Section 2.4.
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Chapter 3

Semiparametric Regression of the Illness-Death

Model with Interval Censored Disease Incidence

Time

The semi-competing model proposed by Fine et al. (2001) is the most popular

framework for studying the disease-death process and their associations. The model

describes a situation, where a subject can experience both a nonterminal event (e.g.,

disease) and a terminal event (e.g., death) during the life. The terminal event can

censor the nonterminal event but not vice versa. For example, in the Aerobics Center

Longitudinal Study (ACLS), participants have the risk of developing the cardiovascular

disease (CVD) during their life. Whereas if a subject dies without CVD, his or her

incidence time of CVD is not observable.

To study the semi-competing model, two general statistical frameworks have been

proposed in the literature. The copula models (Hsieh and Huang, 2012; Li and Cheng,

2016; Yu, 2016; Zhou et al., 2017) assume the joint distribution between the nontermi-

nal and terminal events under the condition that the nonterminal event is dependently

censored by the terminal event. Such structure facilitates the estimation of the asso-

ciation between the two events. However, it makes the interpretation of the marginal

distribution of the nonterminal event hypothetical and complicates the analysis of co-

variate effects (Xu et al., 2010).

Another way of viewing the problem is to consider a multi-state modeling framework
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0:Disease−free 1:Disease

2:Death

Figure 3.1 Semi-competing Diagram

with three states: 0 = disease-free, 1 = disease and 2 = death. As illustrated in

Figure 3.1, there are three possible transitions between these three states and the

disease process is irreversible, which means a person in state 1 can not go back to

state 0 in the future. As a result, for healthy people in state 0, they have two possible

survival paths from disease-free to death: die without disease (0 → 2) or die with

disease (0→ 1→ 2). The common interest in a multi-state model lies in the transition

intensities among the three states. Markov models have been studied extensively in the

literature, where the transition time is assumed to depend on the subject’s current state

only Siannis et al. (2007); Barrett et al. (2011). Extensions such as the semi-Markovian

and non-Markovian models allow the transition from disease to death to depend both

on chronological time and disease duration Datta et al. (2000); Meira-Machado et al.

(2006); de Uña-Álvarez and Meira-Machado (2015). More summaries and overviews on

the semi-competing models can be found in reviews by Andersen and Keiding (2002)

and Meira-Machado et al. (2009).

Most previously mentioned studies assume that the nonterminal event can be either

exactly observed or right censored. However, this is not true in the observational stud-

ies. For example, in the ACLS, the participants went to the Cooper Clinic in Dallas,
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TX for periodic preventive medical examinations. Each participant had a sequence of

follow-up visits, say 0 = v0 < v1 < · · · < vK < ∞, and had the cardiovascular disease

(CVD) either reported or diagnosed during each visit. As a result, we have intermittent

CVD diagnosis information for each subject, and the true incidence time of CVD is

either between two consecutive visits, say (vk−1, vk), or right censored.

In applications involving Markov processes and intermittent observations, Klein

et al. (1984) and Kay (1986) applied simple parametric models with constant inten-

sities. For the three-state disease model with periodic observations, Frydman (1992)

proposed a self-consistent estimator, which extends the Turnbull’s approach (Turnbul-

l, 1976), to estimate the cumulative transition functions nonparametrically. Similar

procedure was extended to the Markov illness-death model (Frydman, 1995a) and the

non-Markov model (Frydman, 1995b). A common concern when studying the illness-

death model with interval censored incidence time is that a subject could become

diseased between two visits and thus die without being observed (Joly et al., 2002;

Frydman and Szarek, 2009). This issue is ignorable when the lengths between intervals

are relatively small compared with the disease development or the causes of death are

available. In the ACLS data, the participants visit the clinic annually and we have

both the death information and its major cause (CVD or other cause) for each partici-

pant from mortality surveillance, principally through the National Death Index (NDI).

Therefore, if a patient died for reasons other than CVD, and all the previous diagnosis

records showing the subject was CVD-free, then we assume the subject died without

CVD.

We include 5236 CVD-free participants, who were enrolled in the ACLS during

1970 ∼ 1980, and follow them until the end of year 2004. We are interested in study-

ing the following three problems based on the ACLS data: (1) estimate the transition

intensities between the states including disease-free, CVD and death; (2) compare the
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survival experience for subjects with and without CVD; and (3) explore the covariate

effects in each transition process. To the best of our knowledge, there are no illness-

death regression models that can study covariate effects and deal with interval censored

incidence time. Therefore, we extend the self-consistent estimator proposed by Fryd-

man (1995a) and apply the expectation-maximization (EM) algorithm to estimate the

semiparametric illness-death regression model, and study the CVD-death process in

the ACLS data.

The rest of the part is constructed as follows. The semi-competing risk model

with interval censored data and the corresponding observed likelihood function are

introduced in Section 3.1. The details of the estimation procedures are discussed in

Section 3.2, where the derivation of the complete likelihood function and calculation

of the conditional expectations are discussed. The complete EM algorithm and the

corresponding variance estimation approach are presented at the end of the section.

Extensive simulation studies based on the proposed method are performed and the

results are discussed in Section 3.3. In Section 3.4, the proposed model is applied

to estimate the covariate effects, such as age, fitness, smoking, etc., on the transition

intensities among the three states: disease-free, CVD and death. Some final conclusions

and limitations of the method are discussed in Section 3.5.

3.1 Semi-competing Risks Model

Notations

Let {X(t), t ≥ 0} denote a Markov process under the semi-competing model with

a state space S = {0, 1, 2}. S has three possible states: state 0 is disease-free, state

1 is illness and state 2 is death. We assume each subject has an initial state of 0 (i.e.

X(0) = 0), and may or may not have disease during their life, and finally will enter
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the absorb state of death. Define the transition probabilities as

Pll′(s, t) = P (X(t) = l′|X(s) = l), l ≤ l′ and l, l′ ∈ S,

which is the probability of being in state l′ at time t given that the subject is in state

l at time s. The transition intensity from state l to state l′ at time t is

λll′(t) = lim
dt→0

Pll′(t, t+ dt)
dt

,

which is the instantaneous rate of moving from state l to state l′. The corresponding

cumulative transition intensity function is then defined as

Λll′(s, t) =
∫ t

s
λll′(u)du.

Let T1 and T2 denote the time to disease and death, respectively. The distributions

of T1 and T2 depend on z, which is a vector of baseline covariates. We assume the

following multiplicative proportional transition intensity model,

λ01(t1|z) = α01(t1)× eβ′01z,

λ02(t2|z) = α02(t2)× eβ′02z,

λ12(t2|z, t1) = α12(t2)× eβ′12z, t2 ≥ t1

where αll′(t) are the baseline intensity functions and βll′ are the coefficients for z in

the l→ l′ transition, l ≤ l′ and l, l′ ∈ S. The first two models for T1 and T2 correspond

to cause specific hazard functions for the competing risks part of the model in which

either the disease or death happens first. The last model for T2|T1 is a Markov model,

which assumes the death time for subjects who have disease depends on the observed

disease time t1, but not on the duration of the disease status.

Observed Likelihood

In observational studies, the exact disease time T1 is unobservable and the disease

information of each subject is followed through a sequence of examination visits 0 =
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v0 < v1 < · · · < vK < ∞. Therefore, we assume T1 is interval censored and [L,R)

is the smallest observed interval that brackets T1. If L = 0, T1 is left censored; if

R =∞, T1 is right censored; otherwise, T1 is interval censored. Since the exact death

information is commonly obtainable, we assume T2 is only subject to right censoring,

and the only case that T2 is right censored is because the patient is still alive at the

end of study (i.e. T2 > vK). Let Y = min(T2, vK) denote the last observation time.

Let δ1 = I(R < ∞) denote the indicator of observing disease by the last visit before

death and δ2 = I(T2 ≤ vK) be an indicator of whether death is observed.

The observed data are O = {(Li, Ri, δ1i, Yi, δ2i, zi), i = 1, · · · , n}, and the parame-

ters of interest in the model is θ = (β01,β02,β12, α01(·), α02(·), α12(·)). Next, we con-

struct the likelihood function for θ conditional on O. We depict all possible scenarios

in Figure 3.2, and describe them case-by-case.

Case 1: if subject i has δ1i = 0 and δ2i = 0, it means neither disease nor death

happened at the end of study vi,Ki
. The observed data are (Li, Ri) = (vi,Ki

,∞) and

Yi = vi,Ki
. The contribution to the likelihood is

P00(0, Li) = P00(0, Yi) = exp{−A01(0, Li)eβ
′
01zi − A02(0, Li)eβ

′
02zi},

where All′(s, t) =
∫ t
s αll′(u)du is the baseline cumulative transition intensity function,

l ≤ l′ and l, l′ ∈ S.

Case 2: if subject i has δ1i = 1 and δ2i = 0, it means the disease is observed between

two visits (vi,k−1, vi,k] during the study, and the subject is still alive at the end of study

vi,Ki
. The observed data are (Li, Ri) = (vi,k−1, vi,k) and Yi = vi,Ki

. The contribution

to the likelihood is P00(0, Li)P01(Li, Ri)P11(Ri, Yi), where
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Figure 3.2 Possible follow-up cases (solid lines are observed and dashed lines are not
observed)

P11(Ri, Yi) = exp{−A12(Ri, Yi)eβ
′
12zi}

P01(Li, Ri) =
∫ Ri

Li

P00(Li, u)λ01(u)P11(u,Ri)du

=
∫ Ri

Li

α01(u)eβ′01zi exp
{
−A01(Li, u)eβ′01zi − A02(Li, u)eβ′02zi − A12(u,Ri)eβ

′
12zi

}
du.

Case 3: if subject i has δ1i = 1 and δ2i = 1, there are two possibilities: (i) the

disease was observed between two visits (vi,k−1, vi,k], and the subject’s death time T2i

was observed later; or (ii) The disease was not observed in the visit vi,k−1, but the

subject died before the next visit vi,k and the death is caused by the disease. The

second scenario indicates the subject developed CVD between the visit vi,k−1 and
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death time T2i. Therefore, the observed disease interval is (Li, Ri) = (vi,k−1, vi,k)

for scenario (i) and (Li, Ri) = (vi,k−1, T2i) for scenario (ii), and the last observa-

tion time is Yi = T2i. The contribution to the likelihood based on either scenario

is P00(0, Li)P01(Li, Ri)P11(Ri, Yi)λ12(Yi), where P11(Ri, Yi) = 1 in the scenario (ii).

Case 4: if subject i has δ1i = 0 and δ2i = 1, we make the following assumption:

Assumption: If the disease is not observed till the last visit before death, i.e., vi,k−1,

and the subject dies for reasons other than the disease, we assume this subject dies

without disease.

Based on the above assumption, we have observed data (Li, Ri) = (T2i,∞) and

Yi = T2i, and the contribution to the likelihood is P00(0, Li)λ02(Yi).

Combining the above Cases 1-4, the observed likelihood function can be written as

L(θ|O) =
n∏
i=1
P00(0, Li)×

{
P01(Li, Ri)P11(Ri, Yi)λδ2i

12 (Yi)
}δ1i × λ02(Yi)(1−δ1i)δ2i

=
n∏
i=1
P00(0, Li)× P11(Ri, Yi)δ1i × λ12(Yi)δ1iδ2i × λ02(Yi)(1−δ1i)δ2i

×
{∫ Ri

Li

P00(Li, u)λ01(u)P11(u,Ri)du
}δ1i

(3.1)

Direct maximization of the above observed likelihood function (3.1) is not feasible,

because of the non-parametric baseline transition functions and the numerical integral.

Therefore, we apply the EM algorithm and derive a self-consistent estimator, which

extends the nonparametric estimator proposed by Frydman (1995a), for the proposed

model with interval censored incidence time.

3.2 Estimation Procedures

Complete Likelihood Function

Let 0 = s0 < s1 < · · · < sM be a sequence of unique and ordered time points

that contains all the observational time of disease or death, i.e., {(Li, Ri <∞, Yi), i =
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1, · · · , n}. We introduce latent variables Nim = I(T1i ∈ (sm−1, sm]) as the indicators of

subject i having the disease in the subinterval (sm−1, sm], i = 1, · · · , n;m = 1, · · · ,M .

Since the baseline transition intensity functions α01(·), α02(·) and α12(·) will be esti-

mated nonparametrically, their maximum likelihood estimators are discrete functions

that can only have positive values at the observed time points sm,m = 1, · · · ,M .

Therefore, conditional on these Nim’s, the integration part in the likelihood function

(3.1) can be written as

P01(Li, Ri) =
∫ Ri

Li

P00(Li, u)λ01(u)P11(u,Ri)du

=
M∑
m=1

Nim × P00(Li, sm)λ01(sm)P11(sm, Ri) (3.2)

=
M∏
m=1

[P00(Li, sm)λ01(sm)P11(sm, Ri)]Nim , (3.3)

where Nim = 0 if sm ≤ Li or sm > Ri. The equations (3.2) and (3.3) are equivalent

because only one of the Nim’s can be one for each subject, the rest will have to be

zeros.

Replacing the integral part in the observed likelihood function (3.1) by (3.3), we

derive the following complete likelihood function given the observed data O and latent

indicators N = {Nim, i = 1, · · · , n;m = 1, · · · ,M}:

Lc(θ|N ,O) =
n∏
i=1

P00(0, Li)× P11(Ri, Yi)δ1i × λ02(Yi)(1−δ1i)δ2i × λ12(Yi)δ1iδ2i

×
{

M∏
m=1

[P00(Li, sm)λ01(sm)P11(sm, Ri)]Nim

}δ1i

. (3.4)

Conditional Expectations

Let θ(d) denote the updated vector of parameters in the dth iteration. Under the

multiplicative proportional transition intensities model, the conditional expectation of

the complete log-likelihood function given the observed data O and current estimate
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θ(d) can be written as the summation of three separate functions:

Q(θ;θ(d)) =E{logLc(θ)|O,θ(d)}

=Q1(β01, α01;θ(d)) +Q2(β02, α02;θ(d)) +Q3(β12, α12;θ(d)),

where

Q1(β01, α01;θ(d)) =
n∑
i=1

M∑
m=1

δ1iW
(d)
im {logα01(sm) + β′01zi − A01(Li, sm)eβ′01zi}

− A01(0, Li)eβ
′
01zi ,

Q2(β02, α02;θ(d)) =
n∑
i=1

(1− δ1i)δ2i[logα01(Yi) + β′02zi]− A02(0, Li)eβ
′
02zi

−
M∑
m=1

δ1iW
(d)
im A02(Li, sm)eβ′02zi ,

Q3(β12, α12;θ(d)) =
n∑
i=1
δ1iδ2i[logα12(Yi) + β′12zi]− δ1iA12(Ri, Yi)eβ

′
12zi

−
M∑
m=1

δ1iW
(d)
im A12(sm, Ri)eβ

′
12zi ,

whereW (d)
im = E[Nim|O,θ(d)] is the conditional expectation of Nim. From the complete

likelihood (3.4), it can be shown that Ni1, · · · , NiM conditionally follow the multino-

mial distribution given the observed data O and current estimated parameter θ(d).

Therefore, we have

W
(d)
im = E[Nim|O,θ(d)] = δ1iI(sm ∈ (Li, Ri])P (d)

00 (Li, sm)λ(d)
01 (sm)P (d)

11 (sm, Ri)∑
sl∈(Li,Ri] P

(d)
00 (Li, sl)λ(d)

01 (sl)P (d)
11 (sl, Ri)

,

for i = 1, · · · , n, m = 1, · · · ,M , where λ(d)
ll′ and P

(d)
ll′ are λll′ and Pll′ with θ being

replaced by θ(d), l ≤ l′ and l, l′ ∈ S.

EM Algorithm

We implement the following algorithm to derive the maximum likelihood estimator

θ̂ in the proposed model:
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Step 0: give the initial values β(0)
01 = β

(0)
02 = β

(0)
12 = 0 and α

(0)
01 (sm) = α

(0)
02 (sm) =

α
(0)
12 (sm) = 1/M .

Step 1: calculate the conditional expectations W (d)
im , i = 1, · · · , n;m = 1, · · · ,M based

on current parameters θ(d).

Step 2: maximize the conditional expectations of the profile log-likelihood functions to

get the updated parameters θ(d+1). This can be done in three different sub-steps:

Step 2.1: maximize Q1(β01, α̃01(·);θ(d)) with respect to β01, where

α̃01(sl;β01) =
∑n
i=1 δ1iW

(d)
il∑n

i=1 e
β′01zi

{
I(Li ≥ sl) +

∑M
m=1 δ1iW

(d)
im I(Li < sl ≤ sm)

} ,
to get the updated estimate β(d+1)

01 , and the updated estimate α(d)
01 (·) is obtained by

replacing β01 by β(d+1)
01 in the expression of α̃01(·).

Step 2.2: maximize Q2(β02, α̃02(·);θ(d)) with respect to β02, where

α̃02(sl;β02) =
∑n
i=1 δ2i(1− δ1i)I(Yi = sl)∑n

i=1 e
β′02zi

{
I(Li ≥ sl) +

∑M
m=1 δ1iW

(d)
im I(Li < sl ≤ sm)

} ,
to get the updated estimate β(d+1)

02 , and the updated estimate α(d)
02 (·) is obtained by

replacing β02 by β(d+1)
02 in the expression of α̃02(·).

Step 2.3: maximize Q3(β12, α̃12(·);θ(d)) with respect to β12, where

α̃12(sl;β12) =
∑n
i=1 δ1iδ2iI(Yi = sl)∑n

i=1 δ1ie
β′12zi

{
I(Ri < sl ≤ Yi) +

∑M
m=1W

(d)
im I(sm < sl ≤ Ri)

} ,
to get the updated estimate β(d+1)

12 , and the updated estimate α(d)
12 (·) is obtained by

replacing β12 by β(d+1)
12 in the expression of α̃12(·).

Step 3: iterate the Step 1 and Step2 until convergence. The convergence criteria is

defined as (θ(d+1) − θ(d))′(θ(d+1) − θ(d)) < .001 or d > 100.

Variance Estimation

After the EM algorithm converges, we have the maximum likelihood estimate θ̂. Let

θ∗ = (β01,β02,β12) denote the vector of all the coefficients in the regression models.
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Suppose the length of the vector θ∗ is m, the variance-covariance matrix of θ̂∗ is a

m×m matrix, and can estimated by inverting the observed information matrix based

on the profile likelihood.

To be specific, we define pl(θ∗) = ∑n
i=1 pli(θ∗) = maxλ0 n

−1∑n
i=1 qi(θ∗, λ0) as the

logarithm of the profile likelihood for θ∗, where qi(θ∗, λ0) denote the logarithm of the

observed likelihood for subject i, i = 1, · · · , n. Let I(θ∗) = {vll′}, l, l′ = 1, · · · ,m

denote the observed information matrix for θ̂∗. The element vll′ can be approximated

by the second-order numerical difference of pl(θ∗). Specifically,

vll′ = (p(θ̂∗ + hnel)− p(θ̂∗))′(p(θ̂∗ + hnel′)− p(θ̂∗))
h2
n

,

where p(θ̂∗) = (pl1(θ̂∗), · · · , pln(θ̂∗)) is the vector of individual profile log-likelihood

functions being evaluated at θ̂∗, el is the unit vector of length m that has the lth

element being 1 and other elements being 0, and hn = O(1/
√
n) is a pre-specified

constant that is bounded by 1/
√
n.

3.3 Simulation Study

We generate data for the semi-competing regression model:

λll′(t|z) = αll′(t)eβ
(1)
ll′ z1+β(2)

ll′ z2 , l ≤ l′ and l, l′ ∈ {0, 1, 2}.

The baseline hazards functions are assumed to be α01(t) = 0.5
√
t, α02(t) = 0.2t2 and

α12(t) = 0.5t2. Two baseline covariates z1 ∼ Ber(0.5) and z2 ∼ U(−2, 2) are included,

with corresponding regression coefficients β01 = (1,−1), β02 = (0, 1) and β12 = (0,−1),

respectively.

Similar to the data generation procedure for competing risks data, we first generate

T from the distribution function

FT (t) = 1− exp{−A01(0, t)eβ′01z − A02(0, t)eβ′02z},
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and then generate an indicator ε = I(T1 < T2) based on the generated T from the

Bernoulli distribution with probability

P (ε = 1) = α01(T )eβ′01z

α01(T )eβ′01z + α02(T )eβ′02z
.

If ε = 1, we have T1 = T and we further generate T2 from the distribution

FT2|T1(t2|t1) = 1− exp{−A12(t1, t2)eβ′12z}.

If ε = 0, we have T2 = T and T1 =∞.

The visit times are generated independently as follows: the total number of visits

K is generated from 1 + Poisson(ν), and the lengths between two consecutive visits

τk = vk−vk−1, k = 1, · · · , K are generated from Exponential(κ). The parameters ν and

κ are adjusted to have 10% and 40% right censoring proportions, which corresponds

to the case when neither disease nor death happened before the last visit, i.e., T1 > vK

and T2 > vK .

Based on the generated T1, T2 and visit times 0 = v0 < v1 < · · · < vK , the observed

data (L,R, δ1, Y, δ2) are derived as follows: Y = min(T2, vK) and δ2 = I(T2 ≤ vK);

L = max{vk : vk < T1, k = 1, · · · , K}, R = I(R0 6= ∅) min{R0}+ I(R0 = ∅)∞, where

R0 = {vk : T1 ≤ vk ≤ Y, k = 1 · · · , K} and ∅ is the null set, and δ1 = I(R <∞).

The estimated simulation results are presented in Table 3.1, where we report the

bias, empirical standard deviation (StDev), mean of the estimated standard error

(StdErr) and the coverage probability (CP) of the 95% Wald confidence intervals.

In all settings, we find the bias of all the parameters are very small, the estimated

standard errors based on the profile likelihood are close to the empirical estimates and

the CP is close to the nominal level 0.95. The performance gets better when the sam-

ple size is relatively large and the right censoring proportion is small. In Figure 3.3 to

Figure 3.8, the estimated baseline cumulative transition functions are plotted as solid

curves, and compared with the true curves, which are presented as the dashed lines.
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Table 3.1 Simulation Results for Illness-Death Models

n = 200 n = 500
Variable Bias StDev StdErr CP Bias StDev StdErr CP
10% censoring
β

(1)
01 0.016 0.211 0.209 0.947 0.016 0.126 0.128 0.960
β

(2)
01 -0.017 0.112 0.114 0.957 -0.004 0.064 0.069 0.968
β

(1)
02 0.013 0.301 0.301 0.953 0.007 0.187 0.182 0.952
β

(2)
02 0.039 0.231 0.225 0.945 0.017 0.135 0.134 0.953
β

(1)
12 -0.020 0.221 0.223 0.945 -0.007 0.134 0.136 0.953
β

(2)
12 -0.030 0.158 0.163 0.959 -0.013 0.095 0.097 0.956

40% censoring
β

(1)
01 0.028 0.240 0.241 0.956 0.011 0.142 0.147 0.960
β

(2)
01 -0.021 0.128 0.130 0.957 -0.008 0.077 0.078 0.956
β

(1)
02 0.022 0.445 0.445 0.962 0.007 0.264 0.262 0.949
β

(2)
02 0.053 0.329 0.335 0.957 0.039 0.200 0.194 0.951
β

(1)
12 -0.013 0.357 0.348 0.948 -0.001 0.210 0.208 0.953
β

(2)
12 -0.069 0.274 0.263 0.938 -0.028 0.150 0.154 0.947

The 2.5% and 97.5% quantiles of the estimates are added as the dotted lines in the

plots. All the curves are found to be close to the truth. More settings with regard

to different functions for the baseline distribution have been performed as well, which

give similar findings. We do not present all the results here due to the space limit.

3.4 Real Data Analysis

We include 5236 participants, who were enrolled between 1970 and 1980 and without

CVD at the time of enrollment, from the Aerobics Center Longitudinal Study (ACLS)

database. The participants were followed till the end of year 2004. The patients went

to the clinic for periodic preventive medical examinations and for counseling regarding

health and lifestyle behaviors.

All participants were disease-free at the beginning. During the study, each subject
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Figure 3.3 Estimated Baseline Cumulative Transition Functions α01 with 10% Censoring
(left: n=200, right: n=500).
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Figure 3.4 Estimated Baseline Cumulative Transition Functions α02 with 10% Censoring
(left: n=200, right: n=500).

has the risk of developing CVD, or dies directly without CVD. We have both the

death information and its major cause (CVD or other cause) for each participant from

mortality surveillance, principally through the National Death Index (NDI). Based on

the assumption we made in Section 3.1 case 4, if a subject died with no diagnosed CVD

record and the cause of death was not CVD, we consider the subject died without CVD.
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Figure 3.5 Estimated Baseline Cumulative Transition Functions α12 with 10% Censoring
(left: n=200, right: n=500).

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

Time

C
um

ul
at

iv
e 

B
as

el
in

e 
H

az
ar

ds
 F

un
ct

io
n

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

Time

C
um

ul
at

iv
e 

B
as

el
in

e 
H

az
ar

ds
 F

un
ct

io
n

Figure 3.6 Estimated Baseline Cumulative Transition Functions α01 with 40% Censoring
(left: n=200, right: n=500).

As a result, we have 353 (6.74%) have CVD diagnosed during the study and 274 out

of them died eventually. There are 479 (9.15%) subjects died without CVD and 4404

(84.11%) were still alive and were CVD-free at their last follow-up visits. The chart

for the distribution of participants was presented in Figure 1.2.

We study the covariates’ effects on the transitions among the three states: disease-
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Figure 3.7 Estimated Baseline Cumulative Transition Functions α02 with 40% Censoring
(left: n=200, right: n=500).
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Figure 3.8 Estimated Baseline Cumulative Transition Functions α12 with 40% Censoring
(left: n=200, right: n=500).

free, CVD and all-cause mortality (death). The covariates we are interested in include

the baseline age, gender (1=female, 0=male), the average cardiorespiratory fitness (fit-

ness), BMI and smoking status (1=smoker, 0=non-smoker). The estimated coefficients

for these covariates are listed in Table 3.2. Generally, senior people have significantly

greater intensity to transit to the states of CVD and death. Females have significantly
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lower risk to derive CVD compared with males, but the risk to death is not significant

between females to males. Fitness, which is an objective measure of the physical ac-

tivity, has generally significant effect in reducing the transition intensity to both CVD

and death. BMI plays a significant role among patients with CVD, and people with

lower BMI tend to have longer survival. Smoking is positively related to both the

development of CVD and death. Though it is not significant in the transition to CVD,

it is marginally significant among both healthy subjects and subjects with CVD.

We also compare the estimated cumulative transition intensity curves in Figure 3.9.

Categorical variables, gender and smoking status, are plotted separately with other

continuous variables being set at the mean values. Generally, females have lower curves

than males and smokers have higher curves than non-smokers among all the three

transitions.

Table 3.2 ACLS Data Analysis: Estimated Coefficient in the Illness-Death Model

Transition Variable Coefficient StDev P-value
Healthy → CV D Age 0.097 0.007 0.000

Gender -1.297 0.286 0.000
Fitness -0.060 0.015 0.000
BMI 0.032 0.021 0.126
Smoke 0.086 0.131 0.510

Healthy → Death Age 0.087 0.006 0.000
Gender -0.234 0.164 0.154
Fitness -0.066 0.012 0.000
BMI 0.024 0.016 0.127
Smoke 0.181 0.109 0.097

CV D → Death Age 0.023 0.008 0.004
Gender -0.087 0.384 0.821
Fitness -0.038 0.015 0.015
BMI 0.045 0.021 0.034
Smoke 0.260 0.145 0.073
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Figure 3.9 ACLS Data: Estimated Cumulative Transition Intensity Curves (from left to
right: Healthy → CV D, Healthy → Death and CV D → Death).

3.5 Discussions and Conclusions

We extended Turnbull (1976)’s self-consistent estimator to the semi-parametric

illness-death regression model, where the disease incidence time and the death time

were subject to interval censoring and right censoring, respectively. The EM algorithm

was applied to derive the estimates for both the coefficients and the baseline transition

intensity functions. Numerical second derivative of the profile likelihood was used to

approximate the observed information matrix and get the variance estimates.

Simulation studies with regard to different sample sizes and censoring proportions

are performed for the proposed approach, and results from all settings suggest a good

performance. The proposed method was then applied to the ACLS data to study

the covariate effects, including age, gender, fitness, BMI and smoking status, in the

transitions among disease-free, CVD and all-cause mortality.
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Chapter 4

On Restricted Optimal Treatment Regime

Estimation for Competing Risks Data

Generally, there is no uniformly best treatment for all patients because of individual

heterogeneity. Personalized medicine is a paradigm that aims to tailor treatment which

maximizes its effect according to patient’s characteristics. The treatment effect may

be determined by how well the treatment can improve the clinical outcomes of interest.

For example, angiotensin converting enzyme inhibitors are evaluated regarding to how

well it can control the blood pressure in hypertension studies; while in HIV studies,

different antiretroviral agents are compared with respect to their ability in controlling

the HIV viral load and CD4 counts. A number of works have been developed to

address this question including Q-learning (Watkins and Dayan, 1992), A-learning

(Murphy, 2003, 2005), direct value search methods (Zhang et al., 2012, 2013) and

outcome-weighted learning (Zhao et al., 2012, 2015). The treatment can also target

on survival time such as how long the HIV treatment can suppress the viral load

under 200 copies/mL. When the primary endpoint to evaluate the treatment effect

is survival time, Zhao et al. (2015) and Bai et al. (2017) proposed doubly robust

estimators of the optimal treatment regime from a classification perspective, Jiang

et al. (2017) proposed an optimal treatment regime estimation method that maximizes

t-year survival probability, and Jiang et al. (2017) extended it to maximize a user-

specified function of survival curve.
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Our study is motivated by the HIV dataset obtained from Health Sciences South

Carolina (HSSC). There are three most commonly used antiretroviral treatment (ART)

classes: nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse

transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs) (Günthard et al., 2016).

Drugs in the same class share common properties, whereas drugs in different class have

different treatment effects. NNRTIs is associated with faster virologic suppression and

PIs recover more CD4 cells (Organization, 2016; Günthard et al., 2016). In general,

modern ART consists a combination of at least three agents from two classes (Günthard

et al., 2016). Common combinations such as “NNRTIs+NRTIs" and “PIs+NRTIs" have

also been compared in literature regarding to their treatment effects measured via the

level of virologic suppression or CD4 recovery. (Staszewski et al., 1999; Haubrich et al.,

2009; Smith et al., 2009; Borges et al., 2016). Jiang et al. (2017) considers the opti-

mal regime of “NNRTIs+NRTIs" and “PIs+NRTIs" to maximize the longest initial

treatment duration based on a data set from HIV/AIDS clinical observational study.

However, it is worthwhile pointing out that all ART drugs cause side effects. Some

side effects, like headaches or occasional dizziness, may not be serious. Others such as

swelling of the throat and tongue, damage to the liver and myocardial infarction, can

be life-threatening (Dybul et al., 2002; Worm et al., 2010). The long-term side effects

of these drugs include kidney problems, liver damage and nervous system/psychiatric

effects such as insomnia, dizziness, depression and suicidal thoughts (Simpson et al.,

2014). The evaluation for ART requires considerations of both treatment effects and

side effects among different populations.

In HSSC data set, there are 426 patients took drug combinations “NNRTIs+NRTIs"

or “PIs+NRTIs" with complete laboratory measures. We define “risk 1" as treatment

or virologic failure, which is monitored by either CD4 counts (≤ 500 cells/mm3) or HIV

viral load (≥200 copies/mL), and “risk 2" as the drug-induced long-term side effects.
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Days to either risk, whichever came first after drug administration, were recorded.

As discussed in Section 1.2, there is no consistent criteria to assign “NNRTIs+NRTIs"

or “PIs+NRTIs" to each individual. How to achieve an optimal treatment regime which

can balance between the treatment efficacy and side effects is a challenging problem

in practice. More specifically, based on HIV patients’ characteristics obtained through

HSSC in SC, we aim to obtain an optimal treatment regime that can minimize the

risk of treatment or virologic failure while controlling the risk of long-term side effects

under a tolerable limit. Such optimal treatment regime can provide useful guidance

for practitioners on antiretroviral drug consultation.

For simplicity, we only consider two risks here. The primary risk of interest is

treatment failure, and the other is the risk due to adverse drug effects. Time to

either risk is recorded and treated as the competing risk data. Estimation methods

for competing risks data have been studied extensively in the literature (Gray, 1988;

Fine and Gray, 1999; Klein and Andersen, 2005; Sun et al., 2006; Lu and Peng, 2008;

Mao and Lin, 2017). However, to the best of our knowledge, there are no methods

for estimating the optimal treatment regime under the competing risks framework.

Therefore, there is an emerging need to develop an optimal individualized treatment

regime achieving balance between risk 1 and risk 2 in practice. Toward this goal,

we define a restricted optimal treatment regime that minimizes the t-year cumulative

incidence function of the main risk while controlling the t-year cumulative incidence of

the other risk under a predetermined level and derive its estimation procedure via a

penalized value search method.

The rest of the part is organized as follows. In Section 4.1, the notation and defini-

tion of the restricted optimal treatment regime for competing risks data are introduced.

An estimator for the proposed restricted optimal treatment regime is presented in Sec-

tion 4.2, and the details of the implementation procedure are also discussed. Simulation

53



www.manaraa.com

studies are conducted to examine the empirical properties of the proposed estimator in

Section 4.3. An application to the HSSC HIV data is presented in Section 4.4. Finally,

some conclusions and discussions are summarized in Section 4.5.

4.1 Model and Notations

Let T1 and T2 denote the event times of risks 1 and 2, respectively, and C denote

the right-censoring time. Define T = min(T1, T2), T̃ = min(T,C), δ = I(T ≤ C) and

ε = I(T = T1) + 2I(T = T2) as an indicator for competing risks. In addition, let X

denote the p-dimensional vector of baseline covariates, and X denote the support forX.

We assume two treatment options, A = {0, 1}, are available. A treatment regime d(x) is

a mapping from X toA, for example, under the linear decision rule, dβ(x) = I(β′x̃ > 0),

where x̃ = (1, x)′. The observed data include O = {(T̃i, δi, δiεi, Ai, Xi), i = 1, · · · , n}.

To define the restricted optimal treatment regime, let T ∗j (a) denote the poten-

tial event times for risk j, j = 1, 2, if treatment a was assigned to the patient,

where a ∈ A. Moreover, let C∗(a) denote the potential censoring time. Define

T ∗(a) = min{T ∗1 (a), T ∗2 (a)}, δ∗(a) = I{T ∗(a) ≤ C∗(a)} and ε∗(a) = I{T ∗(a) =

T ∗1 (a)} + 2I{T ∗(a) = T ∗2 (a)}. In addition, let S∗(t; a) = P{T ∗(a) > t} denote the

survival function of T ∗(a). Then the cumulative incidence function of T ∗j (a) is given

by

F ∗j (t; a) = P{T ∗(a) ≤ t, ε∗(a) = j} =
∫ t

0
S∗(u; a)λ∗j(u; a)du, j = 1, 2, (4.1)

where λ∗j(t; a) is the cause-specific hazard function for T ∗j (a).

Our proposed restricted optimal treatment regime is defined by

dopt = argmin
d∈D

F ∗1 (t0; d),

where t0 is a fixed time point of interest, and D = {d : F ∗2 (t0; d) ≤ α}. In other words,

the proposed restricted optimal treatment regime minimizes the t0-year cumulative
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incidence for risk 1 while controlling the t0-year cumulative incidence of risk 2 under

a pre-determined level α, 0 < α < 1. For simplicity, we only consider linear decision

rules in this work, i.e., d(x) = dβ(x) = I(β′x̃ > 0). Then the restricted optimal linear

decision rule is equivalent to finding βopt, such that

βopt = argmin
β∈B

F ∗1 (t0; β), (4.2)

with the constraint ||β|| = 1, where B = {β : F ∗2 (t0; β) ≤ α}.

Let β∗j = argminβ F ∗j (t0; β) be the unrestricted estimators that minimize the t0-year

cumulative incidence of risk j, j = 1, 2. We have the following relation:

0 ≤ F ∗2 (t0; β∗2) ≤ F ∗2 (t0; β∗1) ≤ 1.

If 0 ≤ α < F ∗2 (t0; β∗2), B is a null set and there is no solution for βopt; if F ∗2 (t0; β∗1) <

α ≤ 1, we have βopt = β∗1 because β∗1 ∈ B. Otherwise, the restricted optimal treatment

regime needs to be searched in the set B.

4.2 Estimation Procedures

To estimate the restricted optimal treatment regime, we make the following three

assumptions, as commonly used in the causal inference literature (Rubin, 1974). (i) The

stable unit treatment value assumption (SUTVA): Tj = AT ∗j (1)+(1−A)T ∗j (0), j = 1, 2

and C = AC∗(1) + (1 − A)C∗(0). (ii) The no unmeasured confounder assumption:

given covariates X, treatment assignment A is independent of potential survival times

T ∗j (a), j = 1, 2, and potential censoring times C∗(a), for a = 0, 1. (iii) The independent

censoring assumption: given covariates X and treatment assignment A, the survival

times Tj, j = 1, 2 are independent of the censoring time C, and the censoring time C

is independent of X and A.

Based on the first two assumptions, we have

F ∗j (t; a) = EX{Fj(t|A = a,X)}, j = 1, 2,
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where Fj(t|A = a,X) = P (T ≤ t, ε = j|A = a,X) is the conditional cumulative inci-

dence function of risk j defined based on the observed data. The relatively restrictive

censoring assumption that C is independent of X and A is needed to derive a simple,

model-free estimator for the regime-specific cumulative incidence functions, which will

be introduced shortly. A similar assumption was adopted in Jiang et al. (2017) for

deriving estimators of the regime-specific survival function. Such an assumption can

be relaxed; however, a model needs to be assumed for censoring times, and the inverse

probability of the censoring-weighted technique needs to be used for constructing the

estimator for the regime-specific cumulative incidence functions.

Next we propose consistent estimators for the cumulative incidence functions based

on the definition in (4.1). Specifically, a consistent estimator for F ∗j (t; β) is given by

F̂j(t; β) =
∫ t

0
Ŝ(u; β)dΛ̂j(u; β), j = 1, 2, (4.3)

where Ŝ(u; β) and Λ̂j(u; β) are consistent estimators for S∗(u; β) and Λ∗j(u; β) =∫ u
0 λ
∗
j(s; β)ds. Here S∗(u; β) = S∗(u; dβ(·)) and λ∗j(u; β) = λ∗j(u; dβ(·)).

Define the counting process of risk j as Nij(t) = I(T̃i ≤ t, δiεi = j) for j = 1, 2 and

let Ni(t) = Ni1(t) + Ni2(t). Moreover, let Yi(t) = I(T̃i ≥ t) denote the at-risk process

for subject i. Under the assumed independent censoring assumption, Jiang et al. (2017)

proposed an inverse propensity score-weighted Kaplan-Meier estimator (IPSWKME)

for the survival function under regime dβ(·), i.e.,

Ŝ(u; β) =
∏
s≤u

{
1−

∑n
i=1 ŵi(β)dNi(s)∑n
i=1 ŵi(β)Yi(s)

}
,

where

ŵi(β) = AiI(β′X̃i > 0) + (1− Ai)I(β′X̃i ≤ 0)
Aiπ̂(Xi) + (1− Ai){1− π̂(Xi)}

,

and π̂(Xi) is an estimator of the propensity score π(Xi) = P (Ai = 1|Xi). It can be

shown that as long as π̂(Xi) is a consistent estimator of π(Xi), Ŝ(u; β) is a consistent
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estimator of the overall survival function S∗(u; β). In practice, the propensity score

is either known by design, as in randomized clinical trials, or estimated from data

based on a posited parametric model, such as a logistic regression model, or estimated

nonparametrically using a kernel or tree regression.

Similarly, we propose a consistent estimator of Λ∗j(u; β) as

Λ̂j(u; β) =
n∑
i=1

∫ u

0

ŵi(β)I(δiεi = j)∑n
k=1 ŵk(β)Yk(s)

dNi(s), j = 1, 2.

Then, a consistent estimator F̂j(t; β) of F ∗j (t; β) can be obtained based on (4.3).

Given the consistent estimator F̂j(t; β), j = 1, 2, a natural estimator of the proposed

restricted optimal treatment regime can be obtained by minimizing F̂1(t0; β) subject

to the constraint F̂2(t0; β) ≤ α. However, such a restricted optimization problem may

not be easy to solve. Here, we propose an approximated solution by penalization.

Specifically, we define the approximated solution for β as

β̂opt = argmin
β
{F̂1(t0; β) +M [F̂2(t0; β)− α]+}, (4.4)

where M is a large number, e.g., M = 1000, and [c]+ = cI(c > 0). Note that when

F̂2(t0; β) ≤ α, no penalization is added; however, when F̂2(t0; β) > α, a large penalty is

added to the target function F̂1(t0; β) to encourage β to satisfy the constraint. It can

be seen that as M →∞, the penalized optimization problem will become the original

restricted optimization problem.

The penalized optimization problem defined in (4.4) may still be challenging be-

cause the estimators F̂j(t0; β) are not smooth functions of β, and the resulted solution

may be trapped in local minima. Following Jiang et al. (2017), to reduce the bias due

to discreteness, we apply kernel smoothing for the regime function dβ(x) = Φ(η′x̃/h)

to obtain the smoothed estimators F̃j(t; β), j = 1, 2, where Φ(·) is the cumulative

distribution function of the standard normal distribution, and h is a bandwidth pa-
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rameter that goes to 0 as n → 0. As suggested in Jiang et al. (2017), we choose

h = c0n
−1/3sd(β′X̃), where c0 = 41/3.

After smoothing, the objective function can be optimized directly using standard

software, such as the “optim” function in R. Because the objective function is not

convex, the solution may still be sensitive to the initial values. In practice, we suggest

to trying a sequence of different initial values with ||β|| = 1, such as the unit vectors

with one of the elements as 1 and the others as 0.

4.3 Simulation Study

In our simulations, we consider two covariates, X1 and X2, which are generated

independently from the uniform distribution U(−2, 2). The treatment indicator A is

generated from a logistic regression model. We consider two cases for the propensity

score: logit{π(X)} = X1 − 0.5X2 (case 1) or logit{π(X)} = X1 − 0.5X2 + X2
1 (case

2). In addition, we consider a proportional hazards model for the cumulative incidence

function of risk 1 (Fine and Gray, 1999):

F1(t|X1, X2, A) = P (T ≤ t, ε = 1|X1, X2, A) = 1− {1− q(1− e−t)}exp{−X1+A(X1−X2)},

where q ∈ (0, 1] is a predetermined constant that controls the proportion of risk 1,

i.e., P (ε = 1) = F1(∞|X1, X2, A) = 1 − (1 − q)exp{−X1+A(X1−X2)}. Given ε = 1, the

conditional cumulative distribution function for the survival time of risk 1 can be

derived as

P (T ≤ t|ε = 1, X1, X2, A) = F1(t|X1, X2, A)
P (ε = 1) = 1− {1− q(1− e−t)}exp{−X1+A(X1−X2)}

1− (1− q)exp{−X1+A(X1−X2)} .

Given ε = 2, the conditional cumulative distribution function for the survival time

of risk 2 is chosen as the exponential with rate exp{−A(2 +X1 + 2X2)}, i.e.,

P (T ≤ t|ε = 2, X1, X2, A) = 1− exp{−te−A(2+X1+2X2)}.
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Then the cumulative incidence function for risk 2 is given by

F2(t|X1, X2, A) = P (T ≤ t, ε = 2|X1, X2, A)

= (1− q)exp{−X1+A(X1−X2)} ×
[
1− exp{−te−A(2+X1+2X2)}

]
.

To generate competing risk event times, we first generate ε (= 1 or 2) from a

Bernoulli distribution with the success probability

P (ε = 1) = 1− (1− q)exp{−X1+A(X1−X2)}.

Then we generate time T by

T =


− log

[
1− 1

q

{
1−

(
1− U

[
1− (1− q)exp{−X1+A(X1−X2)}

])exp{X1−A(X1−X2)}
}]

, ε = 1,

− log (1− U)× exp{A(2 +X1 + 2X2)}, ε = 2,

where U is generated from the uniform distribution U(0, 1). The censoring time C is

generated from the uniform distribution U(0, c), where c is chosen to yield 15% and

40% censoring proportions.

We consider three values for q: 0.2, 0.5 and 0.8, which give respectively about 35%,

62% and 76% risk 1 rates under the 15% censoring rate and about 28%, 47% and 55%

risk 1 rates under the 40% censoring rate. Moreover, we set t0 = 2. Because of the

proportional hazards model formulation for the cumulative incidence function of risk 1,

the unrestricted optimal treatment regime for risk 1, i.e., dβ∗1 that minimizes F ∗1 (t0;β),

is independent of the value of t0 and q and is given by β∗1 = (0,−0.707, 0.707) under

the norm-1 constraint. However, the unrestricted optimal treatment regime for risk 2

is very complicated and not linear. Here we use the grid search method to find the

unrestricted optimal linear decision rule for risk 2, i.e., dβ∗2 that minimizes F ∗2 (t0;β),

which is dependent on the value of q. The resulting true parameter values of β∗1 and β∗2,

and their associated cumulative incidence values F ∗j (t0;β∗k), j, k = 1, 2, are reported in

Table 4.1. In addition, a set of α values are selected based on the two cutoff points,
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F2(t0,β∗2) and F2(t0,β∗1), that satisfy F2(t0,β∗2) < F2(t0,β∗1). The first two values are

within the range, whereas the last value is greater than F2(t0,β∗1). The true parameter

β∗ in the proposed restricted optimal linear decision rule for different q and α values

is also obtained using the grid search method and reported in Table 4.1. It can be

seen that when α > F2(t0,β∗1), the restricted optimal linear decision rule becomes the

unrestricted optimal linear decision rule, i.e., β∗ = β∗1.

Table 4.1 True Parameter Values for Unrestricted and Restricted Optimal Linear
Decision Rules

β∗1 β∗2 Restricted Regime β∗
q = 0.2 α = 0.3 α = 0.4 α = 0.5
β0 0.000 0.794 0.661 0.302 0.000
β1 -0.707 0.576 -0.050 -0.530 -0.707
β2 0.707 0.192 0.748 0.792 0.707
F ∗1 (t0;β) 0.134 0.287 0.163 0.137 0.134
F ∗2 (t0;β) 0.470 0.189 0.300 0.400 0.470
q = 0.5 α = 0.2 α = 0.3 α = 0.4
β0 0.000 0.711 0.609 0.163 0.000
β1 -0.707 0.702 -0.096 -0.604 -0.707
β2 0.707 0.028 0.787 0.780 0.707
F ∗1 (t0;β) 0.307 0.586 0.353 0.310 0.307
F ∗2 (t0;β) 0.337 0.055 0.200 0.300 0.337
q = 0.8 α = 0.05 α = 0.15 α = 0.25
β0 0.000 0.569 0.728 0.374 0.000
β1 -0.707 0.821 0.272 -0.336 -0.707
β2 0.707 -0.035 0.629 0.864 0.707
F ∗1 (t0;β) 0.475 0.759 0.613 0.497 0.475
F ∗2 (t0;β) 0.216 0.011 0.050 0.150 0.216

When estimating the restricted optimal treatment regime using the proposed method,

we consider three propensity score fittings: the true propensity score (denoted by “true

score"), a standard logistic regression fit with X1 and X2 included as predictors (de-

noted by “logistic") and a tree-based fit (denoted by “tree"). Therefore, for case 1, the

fitted logistic regression model for the propensity score is correctly specified, where-

as for case 2, it is misspecified. The tree-based method is a nonparametric fit and
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estimates the true propensity score consistently for both cases.

For each setting, we consider sample size n = 500 and run 1000 replications. The

simulation results for q = 0.2, 0.5 and 0.8 are presented from Table 4.2 to Table 4.7, with

15% and 40% right censoring cases, respectively. The following values are reported:

(1) the mean and empirical standard deviation (SD) of the estimated β coefficients; (2)

the mean and SD of the estimated t0-year cumulative incidence of risk 1, F̂1(t0, β̂opt),

under the estimated restricted optimal treatment regime; (3) the mean and SD of the

true t0-year cumulative incidence of risk 1, F1(t0, β̂opt), under the estimated restricted

optimal treatment regime computed using the Monte Carlo method based on a large

simulated dataset; (4) the mean and SD of the proportion of making the correct decision

(PCD) when comparing the estimated restricted optimal treatment regime with the

true restricted optimal treatment regime; and (5) the proportion of the estimated t0-

year cumulative incidence of risk 2, F̂2(t0, β̂opt), under the estimated restricted optimal

treatment regime being controlled under the pre-determined level α.

From the results, we can see that in most scenarios, the estimated β coefficients

and the estimated and true t0-year cumulative incidence of risk 1 under the estimated

optimal treatment regime are close to their true values. In addition, the bias in the

estimated β coefficients gets smaller as the sample size increases and the censoring

proportion decreases. The PCD is relatively high, ranging from 80% to 90%, and

it also increases as the sample size increases and the censoring proportion decreases.

In addition, the proportion of the estimated t0-year cumulative incidence of risk 2

under the estimated restricted optimal treatment regime being controlled under the

pre-determined level α is close to 1 in all of the settings. These results show that the

restricted optimal treatment regime obtained by the proposed method can minimize the

t0-year cumulative incidence of risk 1 while controlling the t0-year cumulative incidence

of risk 2 under a predetermined level, as designed.
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Comparing the three estimated restricted optimal treatment regimes obtained based

on true propensity scores and the estimated propensity scores using logistic regression

and the tree classification approach, we find that all the results are generally comparable

for both cases 1 and 2, especially for small α values. When α is large, the estimated β

coefficients based on the misspecified logistic regression of the propensity score under

case 2 have relatively larger biases compared with the other two estimators, and the

corresponding estimated restricted optimal treatment regimes have slightly smaller

PCDs. This suggests that the proposed estimation method may have some robustness

to the misspecification of the propensity score model, especially in terms of treatment

decision.

4.4 Real Data Analysis

We apply the proposed method to an HIV dataset obtained from Health Sci-

ences South Carolina (HSSC). Two combinations of HIV treatment are considered:

“PIs+NRTIs" (regime 1) and “NNRTIs+NRTIs" (regime 2). There are a total of 426

HIV patients included in this study. Among them, 333 patients are assigned to regime

1 and 93 patients are in regime 2. In addition, 178 (41.8%) patients have either CD4

counts drop below 500 cells/mm3 or HIV viral loads greater than 200 copies/mL (re-

ferred to as “risk 1"), and 151 (35.4%) patients have serious drug-induced side effects,

such as liver damage, kidney problems or depression (referred to as “risk 2").

The survival time of interest is defined as days after drug administration to the

occurrence of either risk, whichever comes first. The risk-type indicator is recorded as

1 (“risk 1") or 2 (“risk 2"). If neither risk occurred during the study period, the survival

time is censored. The baseline characteristic for HIV patient includes standardized age,

gender (male=1 or female=0), insurance type (government/commercial (GC) = 1 or

other = 0) and race (black = 1 or white = 0).

62



www.manaraa.com

Table 4.2 Simulation Results for Precision Medicine (q=0.2, 15% Censoring)

Case 1 Case 2
α Parameter Truth True Score Logistic Tree True Score Logistic Tree
0.3 β0 0.66 0.58(0.165) 0.58(0.160) 0.53(0.167) 0.52(0.195) 0.55(0.163) 0.48(0.206)

β1 -0.05 -0.08(0.250) -0.05(0.234) -0.08(0.219) -0.20(0.273) -0.03(0.250) -0.15(0.220)
β2 0.75 0.74(0.129) 0.75(0.122) 0.79(0.102) 0.74(0.163) 0.76(0.133) 0.80(0.117)
F̂1(t0, β̂opt) 0.16 0.16(0.030) 0.16(0.029) 0.17(0.030) 0.15(0.030) 0.16(0.024) 0.15(0.026)
F1(t0, β̂opt) - 0.19(0.017) 0.18(0.017) 0.18(0.015) 0.19(0.021) 0.19(0.020) 0.18(0.016)
PCD - 0.86(0.108) 0.85(0.113) 0.85(0.126) 0.87(0.099) 0.87(0.097) 0.87(0.112)
F̂2(t0, β̂opt) ≤ α - 1 0.996 1 1 1 1

0.4 β0 0.3 0.31(0.231) 0.31(0.216) 0.27(0.221) 0.25(0.249) 0.25(0.248) 0.18(0.265)
β1 -0.53 -0.45(0.192) -0.45(0.187) -0.45(0.170) -0.46(0.232) -0.31(0.198) -0.45(0.209)
β2 0.79 0.77(0.119) 0.78(0.114) 0.80(0.109) 0.77(0.138) 0.85(0.121) 0.80(0.138)
F̂1(t0, β̂opt) 0.14 0.13(0.026) 0.13(0.026) 0.14(0.027) 0.13(0.029) 0.14(0.025) 0.13(0.026)
F1(t0, β̂opt) - 0.15(0.009) 0.15(0.008) 0.15(0.008) 0.15(0.013) 0.15(0.009) 0.15(0.011)
PCD - 0.92(0.073) 0.93(0.074) 0.94(0.078) 0.91(0.088) 0.90(0.084) 0.91(0.086)
F̂2(t0, β̂opt) ≤ α - 1 1 1 1 1 1

0.5 β0 0 0.08(0.261) 0.08(0.255) 0.04(0.266) 0.08(0.295) 0.17(0.294) -0.01(0.316)
β1 -0.71 -0.62(0.181) -0.62(0.178) -0.61(0.172) -0.57(0.230) -0.37(0.220) -0.58(0.233)
β2 0.71 0.70(0.142) 0.70(0.134) 0.72(0.128) 0.71(0.150) 0.82(0.154) 0.70(0.173)
F̂1(t0, β̂opt) 0.13 0.13(0.027) 0.13(0.027) 0.13(0.026) 0.12(0.031) 0.14(0.026) 0.13(0.026)
F1(t0, β̂opt) - 0.14(0.009) 0.14(0.007) 0.14(0.007) 0.14(0.010) 0.15(0.010) 0.14(0.011)
PCD - 0.86(0.114) 0.86(0.112) 0.86(0.125) 0.85(0.118) 0.81(0.099) 0.85(0.107)
F̂2(t0, β̂opt) ≤ α - 1 1 1 1 1 1
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Table 4.3 Simulation Results for Precision Medicine (q=0.2, 40% Censoring)

Case 1 Case 2
α Parameter Truth True Score Logistic Tree True Score Logistic Tree
0.3 β0 0.66 0.57(0.191) 0.57(0.181) 0.53(0.184) 0.49(0.218) 0.54(0.183) 0.46(0.228)

β1 -0.05 -0.08(0.279) -0.06(0.264) -0.10(0.244) -0.19(0.290) -0.04(0.273) -0.16(0.239)
β2 0.75 0.73(0.144) 0.74(0.128) 0.78(0.124) 0.76(0.151) 0.76(0.159) 0.80(0.129)
F̂1(t0, β̂opt) 0.16 0.16(0.034) 0.16(0.033) 0.16(0.032) 0.15(0.034) 0.16(0.028) 0.15(0.029)
F1(t0, β̂opt) - 0.19(0.019) 0.19(0.019) 0.18(0.017) 0.19(0.019) 0.19(0.021) 0.18(0.019)
PCD - 0.85(0.111) 0.85(0.115) 0.83(0.120) 0.85(0.101) 0.85(0.100) 0.86(0.113)
F̂2(t0, β̂opt) ≤ α - 1 1 1 0.998 1 0.998

0.4 β0 0.3 0.31(0.257) 0.32(0.236) 0.26(0.228) 0.25(0.270) 0.25(0.278) 0.18(0.287)
β1 -0.53 -0.43(0.204) -0.44(0.202) -0.44(0.198) -0.46(0.236) -0.30(0.223) -0.44(0.228)
β2 0.79 0.77(0.132) 0.77(0.121) 0.79(0.118) 0.76(0.155) 0.84(0.147) 0.79(0.147)
F̂1(t0, β̂opt) 0.14 0.13(0.028) 0.13(0.028) 0.14(0.029) 0.13(0.032) 0.14(0.028) 0.13(0.028)
F1(t0, β̂opt) - 0.15(0.010) 0.15(0.010) 0.15(0.009) 0.15(0.014) 0.15(0.011) 0.15(0.012)
PCD - 0.92(0.075) 0.92(0.074) 0.92(0.090) 0.90(0.083) 0.88(0.094) 0.90(0.089)
F̂2(t0, β̂opt) ≤ α - 1 1 0.998 0.998 1 1

0.5 β0 0 0.09(0.285) 0.09(0.278) 0.05(0.274) 0.08(0.314) 0.16(0.314) -0.00(0.322)
β1 -0.71 -0.60(0.195) -0.60(0.200) -0.61(0.182) -0.55(0.238) -0.37(0.240) -0.57(0.244)
β2 0.71 0.70(0.154) 0.70(0.146) 0.71(0.143) 0.71(0.164) 0.80(0.189) 0.69(0.189)
F̂1(t0, β̂opt) 0.13 0.12(0.029) 0.12(0.028) 0.13(0.029) 0.12(0.033) 0.14(0.029) 0.12(0.028)
F1(t0, β̂opt) - 0.14(0.008) 0.14(0.009) 0.14(0.008) 0.14(0.011) 0.15(0.011) 0.14(0.011)
PCD - 0.85(0.114) 0.85(0.116) 0.85(0.121) 0.84(0.115) 0.81(0.109) 0.85(0.114)
F̂2(t0, β̂opt) ≤ α - 1 1 1 1 1 1
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Table 4.4 Simulation Results for Precision Medicine (q=0.5, 15% Censoring)

Case 1 Case 2
α Parameter Truth True Score Logistic Tree True Score Logistic Tree
0.2 β0 0.61 0.50(0.201) 0.51(0.189) 0.42(0.194) 0.42(0.247) 0.40(0.225) 0.35(0.218)

β1 -0.1 -0.14(0.271) -0.12(0.254) -0.18(0.230) -0.26(0.295) -0.17(0.238) -0.25(0.225)
β2 0.79 0.77(0.144) 0.78(0.137) 0.83(0.112) 0.76(0.180) 0.82(0.138) 0.84(0.124)
F̂1(t0, β̂opt) 0.35 0.35(0.037) 0.35(0.036) 0.36(0.037) 0.34(0.041) 0.36(0.031) 0.34(0.035)
F1(t0, β̂opt) - 0.38(0.018) 0.38(0.017) 0.38(0.019) 0.39(0.032) 0.38(0.021) 0.37(0.015)
PCD - 0.89(0.055) 0.90(0.051) 0.90(0.047) 0.87(0.075) 0.90(0.046) 0.92(0.040)
F̂2(t0, β̂opt) ≤ α - 0.998 1 0.996 0.996 1 0.998

0.3 β0 0.16 0.21(0.228) 0.20(0.220) 0.11(0.211) 0.17(0.279) 0.16(0.259) 0.09(0.260)
β1 -0.6 -0.52(0.190) -0.54(0.175) -0.53(0.158) -0.50(0.233) -0.35(0.182) -0.50(0.216)
β2 0.78 0.76(0.135) 0.76(0.122) 0.79(0.111) 0.75(0.159) 0.86(0.135) 0.77(0.172)
F̂1(t0, β̂opt) 0.31 0.31(0.034) 0.31(0.034) 0.32(0.037) 0.31(0.049) 0.34(0.036) 0.32(0.038)
F1(t0, β̂opt) - 0.32(0.011) 0.32(0.009) 0.32(0.008) 0.33(0.023) 0.33(0.011) 0.32(0.011)
PCD - 0.90(0.049) 0.90(0.048) 0.91(0.041) 0.88(0.071) 0.88(0.045) 0.90(0.050)
F̂2(t0, β̂opt) ≤ α - 1 1 1 1 1 1

0.4 β0 0 0.02(0.232) 0.02(0.223) -0.06(0.242) 0.06(0.275) 0.15(0.266) -0.03(0.294)
β1 -0.71 -0.66(0.173) -0.66(0.158) -0.64(0.164) -0.58(0.224) -0.36(0.192) -0.59(0.234)
β2 0.71 0.68(0.160) 0.68(0.149) 0.69(0.150) 0.71(0.166) 0.85(0.155) 0.68(0.205)
F̂1(t0, β̂opt) 0.31 0.30(0.037) 0.30(0.036) 0.32(0.038) 0.30(0.056) 0.34(0.036) 0.31(0.040)
F1(t0, β̂opt) - 0.31(0.008) 0.31(0.007) 0.31(0.007) 0.32(0.013) 0.32(0.011) 0.32(0.011)
PCD - 0.90(0.049) 0.91(0.047) 0.90(0.049) 0.88(0.061) 0.83(0.051) 0.87(0.056)
F̂2(t0, β̂opt) ≤ α - 1 1 1 1 1 1
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Table 4.5 Simulation Results for Precision Medicine (q=0.5, 40% Censoring)

Case 1 Case 2
α Parameter Truth True Score Logistic Tree True Score Logistic Tree
0.2 β0 0.61 0.46(0.250) 0.46(0.241) 0.40(0.228) 0.38(0.284) 0.38(0.262) 0.32(0.258)

β1 -0.1 -0.15(0.299) -0.15(0.297) -0.20(0.264) -0.28(0.315) -0.18(0.280) -0.25(0.276)
β2 0.79 0.76(0.176) 0.77(0.163) 0.81(0.147) 0.74(0.213) 0.80(0.183) 0.82(0.164)
F̂1(t0, β̂opt) 0.35 0.34(0.046) 0.34(0.045) 0.35(0.047) 0.34(0.046) 0.35(0.040) 0.34(0.045)
F1(t0, β̂opt) - 0.39(0.024) 0.38(0.023) 0.38(0.023) 0.39(0.032) 0.38(0.027) 0.38(0.020)
PCD - 0.88(0.067) 0.88(0.061) 0.88(0.065) 0.86(0.077) 0.89(0.057) 0.90(0.054)
F̂2(t0, β̂opt) ≤ α - 1 0.998 1 0.998 0.998 1

0.3 β0 0.16 0.21(0.274) 0.19(0.269) 0.12(0.252) 0.15(0.311) 0.16(0.285) 0.09(0.301)
β1 -0.6 -0.49(0.227) -0.49(0.228) -0.51(0.203) -0.51(0.253) -0.36(0.242) -0.50(0.240)
β2 0.78 0.75(0.168) 0.76(0.156) 0.78(0.141) 0.72(0.196) 0.81(0.212) 0.74(0.214)
F̂1(t0, β̂opt) 0.31 0.30(0.043) 0.30(0.043) 0.32(0.046) 0.30(0.054) 0.34(0.044) 0.31(0.046)
F1(t0, β̂opt) - 0.33(0.016) 0.32(0.015) 0.32(0.012) 0.33(0.023) 0.33(0.015) 0.33(0.014)
PCD - 0.88(0.062) 0.88(0.059) 0.89(0.053) 0.87(0.072) 0.87(0.057) 0.89(0.054)
F̂2(t0, β̂opt) ≤ α - 1 1 1 1 1 1

0.4 β0 0 0.04(0.274) 0.03(0.274) -0.06(0.274) 0.03(0.306) 0.14(0.293) -0.03(0.317)
β1 -0.71 -0.63(0.206) -0.64(0.197) -0.62(0.184) -0.59(0.233) -0.39(0.251) -0.59(0.249)
β2 0.71 0.67(0.189) 0.67(0.188) 0.68(0.179) 0.68(0.197) 0.79(0.238) 0.66(0.234)
F̂1(t0, β̂opt) 0.31 0.29(0.045) 0.29(0.045) 0.31(0.047) 0.29(0.059) 0.33(0.044) 0.30(0.049)
F1(t0, β̂opt) - 0.32(0.011) 0.32(0.011) 0.32(0.011) 0.32(0.014) 0.33(0.015) 0.32(0.013)
PCD - 0.88(0.059) 0.88(0.060) 0.89(0.060) 0.87(0.063) 0.82(0.061) 0.86(0.061)
F̂2(t0, β̂opt) ≤ α - 1 1 1 1 1 1
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Table 4.6 Simulation Results for Precision Medicine (q=0.8, 15% Censoring)

Case 1 Case 2
α Parameter Truth True Score Logistic Tree True Score Logistic Tree
0.05 β0 0.73 0.67(0.196) 0.66(0.185) 0.65(0.183) 0.60(0.256) 0.65(0.219) 0.59(0.253)

β1 0.27 0.17(0.304) 0.19(0.289) 0.12(0.297) -0.06(0.368) -0.00(0.399) -0.01(0.345)
β2 0.63 0.58(0.230) 0.60(0.219) 0.64(0.196) 0.61(0.248) 0.56(0.227) 0.64(0.233)
F̂1(t0, β̂opt) 0.61 0.60(0.044) 0.60(0.042) 0.61(0.042) 0.57(0.051) 0.59(0.036) 0.58(0.044)
F1(t0, β̂opt) - 0.64(0.017) 0.64(0.016) 0.64(0.013) 0.63(0.011) 0.64(0.015) 0.63(0.016)
PCD - 0.88(0.069) 0.89(0.065) 0.90(0.058) 0.90(0.066) 0.90(0.053) 0.91(0.054)
F̂2(t0, β̂opt) ≤ α - 0.994 0.994 0.992 0.996 1 0.996

0.15 β0 0.37 0.31(0.267) 0.30(0.263) 0.18(0.244) 0.20(0.319) 0.18(0.289) 0.14(0.276)
β1 -0.34 -0.34(0.277) -0.34(0.262) -0.38(0.215) -0.42(0.289) -0.38(0.208) -0.43(0.247)
β2 0.86 0.78(0.157) 0.80(0.144) 0.84(0.125) 0.74(0.218) 0.81(0.207) 0.79(0.189)
F̂1(t0, β̂opt) 0.5 0.49(0.038) 0.50(0.037) 0.51(0.041) 0.50(0.051) 0.53(0.036) 0.50(0.044)
F1(t0, β̂opt) - 0.53(0.022) 0.52(0.020) 0.52(0.014) 0.54(0.039) 0.51(0.011) 0.52(0.016)
PCD - 0.88(0.063) 0.89(0.055) 0.90(0.074) 0.84(0.095) 0.91(0.061) 0.91(0.052)
F̂2(t0, β̂opt) ≤ α - 1 0.998 1 0.998 1 1

0.25 β0 0 -0.00(0.260) -0.01(0.245) -0.09(0.255) 0.04(0.281) 0.16(0.289) -0.02(0.280)
β1 -0.71 -0.65(0.185) -0.66(0.173) -0.63(0.166) -0.57(0.218) -0.40(0.211) -0.63(0.250)
β2 0.71 0.66(0.179) 0.66(0.168) 0.69(0.167) 0.72(0.185) 0.80(0.218) 0.64(0.246)
F̂1(t0, β̂opt) 0.48 0.46(0.043) 0.46(0.043) 0.48(0.045) 0.47(0.076) 0.53(0.037) 0.48(0.051)
F1(t0, β̂opt) - 0.48(0.007) 0.48(0.006) 0.48(0.007) 0.49(0.011) 0.50(0.011) 0.49(0.011)
PCD - 0.89(0.052) 0.89(0.052) 0.88(0.056) 0.87(0.057) 0.82(0.051) 0.85(0.057)
F̂2(t0, β̂opt) ≤ α - 1 1 1 1 1 1
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Table 4.7 Simulation Results for Precision Medicine (q=0.8, 40% Censoring)

Case 1 Case 2
α Parameter Truth True Score Logistic Tree True Score Logistic Tree
0.05 β0 0.73 0.59(0.261) 0.59(0.265) 0.55(0.267) 0.48(0.334) 0.54(0.297) 0.48(0.325)

β1 0.27 0.10(0.360) 0.10(0.356) 0.08(0.349) -0.12(0.405) -0.05(0.412) -0.03(0.396)
β2 0.63 0.61(0.266) 0.60(0.273) 0.67(0.234) 0.62(0.298) 0.62(0.267) 0.66(0.280)
F̂1(t0, β̂opt) 0.61 0.55(0.068) 0.55(0.067) 0.56(0.066) 0.52(0.075) 0.54(0.057) 0.53(0.069)
F1(t0, β̂opt) - 0.64(0.027) 0.64(0.029) 0.65(0.030) 0.65(0.035) 0.65(0.022) 0.65(0.036)
PCD - 0.85(0.079) 0.85(0.082) 0.88(0.081) 0.86(0.093) 0.88(0.064) 0.87(0.092)
F̂2(t0, β̂opt) ≤ α - 0.996 0.988 0.99 0.994 0.994 0.996

0.15 β0 0.37 0.25(0.341) 0.24(0.336) 0.10(0.325) 0.18(0.377) 0.18(0.350) 0.08(0.347)
β1 -0.34 -0.39(0.305) -0.38(0.312) -0.40(0.277) -0.45(0.306) -0.38(0.300) -0.43(0.308)
β2 0.86 0.73(0.223) 0.73(0.222) 0.78(0.204) 0.68(0.271) 0.73(0.277) 0.73(0.255)
F̂1(t0, β̂opt) 0.5 0.45(0.059) 0.45(0.058) 0.47(0.059) 0.46(0.066) 0.49(0.050) 0.46(0.058)
F1(t0, β̂opt) - 0.53(0.026) 0.53(0.024) 0.52(0.021) 0.54(0.035) 0.52(0.022) 0.52(0.024)
PCD - 0.85(0.082) 0.86(0.079) 0.88(0.066) 0.84(0.097) 0.88(0.072) 0.88(0.085)
F̂2(t0, β̂opt) ≤ α - 1 1 1 0.996 0.998 1

0.25 β0 0 0.00(0.327) 0.01(0.324) -0.12(0.319) 0.03(0.341) 0.13(0.356) -0.04(0.341)
β1 -0.71 -0.63(0.234) -0.64(0.238) -0.60(0.216) -0.57(0.266) -0.42(0.295) -0.59(0.299)
β2 0.71 0.63(0.225) 0.61(0.235) 0.66(0.215) 0.66(0.251) 0.71(0.292) 0.61(0.277)
F̂1(t0, β̂opt) 0.48 0.42(0.060) 0.42(0.059) 0.44(0.059) 0.43(0.079) 0.48(0.051) 0.44(0.062)
F1(t0, β̂opt) - 0.49(0.014) 0.49(0.015) 0.49(0.014) 0.49(0.018) 0.50(0.019) 0.50(0.019)
PCD - 0.86(0.069) 0.86(0.070) 0.86(0.071) 0.84(0.072) 0.80(0.066) 0.83(0.071)
F̂2(t0, β̂opt) ≤ α - 1 1 1 1 1 1
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First, we fit two models for the propensity score: a logistic regression and a tree

classification approach. The ROC curves for the logistic and tree regression approaches

are plotted in Figure 4.1 with the corresponding AUCs as 0.621 and 0.584 respectively.

The logistic regression gives slightly better fit for the propensity score. We compute

the proposed restricted optimal treatment regime based on both the logistic and tree

regression fits of the propensity score, and the results are similar. Here, to save space,

we present the results based on the logistic regression only.

We consider estimation of the restricted optimal treatment regime at one year, two

years, three years and four years. That is, time t0 = 365 days, 730 days, 1095 days and

1460 days after drug administration. In Table 4.8, we report the estimated coefficients

β̂∗1 and β̂∗2 in the unrestricted optimal treatment regime, which minimize the t0-year

cumulative incidence of risk 1 and risk 2, respectively. Then, based on the range from

F̂2(t0; β̂∗1) to F̂2(t0; β̂∗2), we select α = 0.4 as a common value that is included in this

range, and report the corresponding estimated coefficients β̂opt in the restricted opti-

mal treatment regime. It can be seen that the t0-year cumulative incidences of risk

2 under the estimated restricted optimal treatment regime are all controlled at level

α = 0.4 as desired; however, the t0-year cumulative incidence of risk 2 ranges between

0.427 and 0.488 under the estimated unrestricted optimal treatment regime that min-

imizes the t0-year cumulative incidence of risk 1. In addition, with the constraint on

the cumulative incidence of risk 2, the estimated restricted optimal treatment regime

increases the cumulative incidence of risk 1 compared with the estimated unrestricted

optimal treatment regime. The magnitude of inflation depends on how stringent the

posited constraint is on risk 2. For example, when t0 = 365, F̂2(t0; β̂∗1) = 0.427 and the

cumulative incidence of risk 1 increases from 0.355 to 0.366, whereas when t0 = 1460,

F̂2(t0; β̂∗1) = 0.488 and the cumulative incidence of risk 1 increases from 0.426 to 0.481.

In Table 4.9, the number of patients assigned to the two treatment regimes are
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Table 4.8 Estimated Regimes for HIV study

One Year(t0 = 365) Two Year(t0 = 730)
β̂∗1 β̂∗2 β̂opt(α = 0.4) β̂∗1 β̂∗2 β̂opt(α = 0.4)

Intercept 0.775 0.009 0.825 0.539 -0.477 0.831
Age -0.129 0.646 -0.085 -0.389 0.389 0.200
Race -0.508 0.472 -0.366 -0.642 0.703 -0.211
Insurance -0.170 -0.528 -0.298 0.377 -0.351 -0.373
Gender -0.310 -0.283 -0.298 -0.064 -0.056 -0.292
F̂1(t0;β) 0.355 0.457 0.366 0.396 0.486 0.416
F̂2(t0;β) 0.427 0.327 0.400 0.477 0.347 0.400

Three Year(t0 = 1095) Four Year(t0 = 1460)
β̂∗1 β̂∗2 β̂opt(α = 0.4) β̂∗1 β̂∗2 β̂opt(α = 0.4)

Intercept 0.502 -0.505 -0.421 0.484 -0.505 0.567
Age -0.399 0.381 0.243 -0.404 0.378 -0.218
Race -0.657 0.707 0.212 -0.645 0.708 0.568
Insurance 0.396 -0.307 0.483 0.430 -0.310 0.114
Gender -0.021 -0.071 0.697 -0.047 -0.069 -0.544
F̂1(t0;β) 0.417 0.523 0.461 0.426 0.542 0.481
F̂2(t0;β) 0.483 0.350 0.400 0.488 0.353 0.400

calculated and compared with the actual treatment received. The proportions where

the treatment dictated by the estimated optimal treatment regime is consistent with

the received treatment (cons%) are also reported. Patients received regime 1 more

frequently than regime 2 in our dataset (333 vs 93), because PIs is considered to

have slightly greater CD4 cell count recovery and lower antiretroviral drug resistance

evolution with virologic failure in practice (Organization, 2016). Similar arguments

about allocations of these two drugs were discussed in literature (Jiang et al., 2017).

However, the picture can be quite different when we consider side effects and apply

restricted optimal treatment regimes. The estimated unrestricted optimal treatment

regime that minimizes the t0-year cumulative incidence of risk 2 is found to be closer

to the actual treatment assignment compared with the estimated unrestricted optimal

treatment regime that minimizes the t0-year cumulative incidence of risk 1 and the

estimated restricted optimal treatment regimes. This also suggests that doctors are

70



www.manaraa.com

likely to be conservative in practice and tend to assign drugs with lower risk of side

effects.

Table 4.9 Comparing the Restricted Optimal Treatment Regime with Received
Treatments

Optimal Regimes
Received Treatments β̂∗1 β̂∗2 β̂opt(α = 0.4)

Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2
One Year Regime 1 134 199 188 145 91 242

Regime 2 35 58 44 49 20 73
Cons(%) 45.1 55.6 38.5

Two Year Regime 1 105 228 201 132 67 266
Regime 2 36 57 55 38 8 85
Cons(%) 38.0 56.1 35.7

Three Year Regime 1 109 224 204 129 59 274
Regime 2 36 57 55 38 14 79
Cons(%) 39.0 56.8 32.4

Four Year Regime 1 107 226 204 129 13 320
Regime 2 38 55 55 38 5 88
Cons(%) 38.0 56.8 23.7

We also estimate the restricted optimal treatment regime with a sequence of α val-

ues in the range from F̂2(t0; β̂∗1) to F̂2(t0; β̂∗2) and plot the number of patients assigned

to each treatment by the estimated restricted optimal treatment regime in Figure 4.2.

In the plot, the dashed vertical line corresponds to α = F̂2(t0; β̂∗2), beyond which the

restricted optimal treatment regime is equivalent to the unrestricted optimal treatment

regime. By comparing the two curves, we can see how treatments are distributed a-

mong patients under the restricted optimal treatment regime for different α values.

In summary, the restricted optimal treatment regime tends to assign less patients to

regime 2 (NNRTIs+NRTIs) than regime 1 (PIs+NRTIs) compared with the unrestrict-

ed optimal treatment regime for risk 1, especially when α is small. However, as the

constraint level α increases, the number of patients assigned to regime 2 by the restrict-

ed optimal treatment regime increases and reaches its maximum for some α value, and
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then drops to that of the unrestricted optimal treatment regime.
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Figure 4.1 Receiver Operating Characteristic Curve for HIV Data

4.5 Discussions and Conclusions

In this work, we propose a new method for estimating the restricted optimal treat-

ment regime for competing risks data, which minimizes the cumulative incidence of

the primary risk at a fixed time point while controlling the corresponding cumulative

incidence of the second risk under a pre-specified level. A penalization method is devel-

oped for obtaining an approximate solution for the challenging restricted optimization

problem.

The proposed method is applied to the HSSC HIV dataset to obtain a restricted op-

timal treatment regime that minimizes the t-year cumulative incidence function of the

risk of treatment or virologic failures while controlling the t-year cumulative incidence

of serious drug-induced side effects under a predetermined level.
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Figure 4.2 Treatment Distribution for HIV Data
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Chapter 5

Summary and Future Studies

We completed three projects in this dissertation. The first two projects are based

on the ACLS database, and the last project is based on the HSSC database. In the

ACLS datasets, we study the longitudinal effect of fitness on CVD mortality through

generalized odds rate joint models with varying-coefficients in Project 1. The estimat-

ed age-dependent varying coefficient curve for the longitudinal fitness in the survival

model clearly represented the change of the fitness effect on CVD mortality over age.

Aging is the most important factor with lots of chronic diseases. The age-related be-

havior change play an important role in disease development and the corresponding

disease-related mortality. The proposed model can be broadly used in modeling sur-

vival outcomes with age-varying effect of longitudinal predictors, and helps improving

the understanding of the real impact of some age-related chronic behaviors on the

survival outcomes.

The transitions to the CVD and all-cause mortality states in the ACLS are studied

through the Markov illness-death regression models in Project 2. Estimation methods

are derived for the proposed model where CVD incidence time is considered as interval

censored. Covariates’ effect on the transitions among different states in the illness-

death model can be evaluated through the regression coefficients in each transition

intensity functions. Based on the estimated coefficients, we are able to know which

factors are important for subjects to transit to the CVD and death states. Current

research requires that the mortality reasons, especially the one related to the disease of
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interest, are available. This additional information is available in the ACLS data, but

not always obtainable in observational studies. In the case when such information is not

available, the accuracy of estimation based on the proposed method also relies on the

length of visit intervals. That is, if the average length between two visits is relatively

small compared with the time to develop the disease of interest, we can also ignore the

possibility that the patient dies with the disease when there’s no previous diagnosed

records. Future extensions of current research can focus on the semi-markovian or the

non-markovian models, where the transition from disease to death depend on both the

disease transition time and the duration of having disease.

In Project 3, we study the precision medicine problem under a competing risks

framework based on the HSSC HIV dataset. We define a restricted optimal treat-

ment regime that minimizes the t-year cumulative incidence function of the main risk

while controlling the t-year cumulative incidence of the other risk under a predeter-

mined level. In the proposed method, we only consider the inverse propensity score-

weighted estimators for the regime-specific overall survival function and cumulative

incidence functions. However, it can be extended to accommodate the augmented in-

verse propensity score-weighted estimators, similar to in Jiang et al. (2017). Such an

extension requires modeling and estimation of the cumulative incidence functions of

both risks simultaneously, for example, as in Lu and Peng (2008) and Mao and Lin

(2017), which may be difficult to implement in practice. In addition, the proposed

method can be extended to derive the restricted optimal dynamic treatment regime

for multiple treatment decision time points. These warrant future research.
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